=
= I=

RSITY [LISBOA

— €D
= I=
m 2o

Y K TECNICO ceshet

VOV WV -

Kubernetes Scheduling with
Checkpoint/Restore

Challenges & Open Problems

Viktoria Spisakova (MU), Radostin Stoyanov (Oxford), Lukas Hejtmanek (MU),
Dalibor Klusacek (CESNET), Adrian Reber (Red Hat), Rodrigo Bruno (ULisbon)

& RedHat

Background I.

Traditional HPC Batch Scheduling

e Workloads are submitted as jobs
o with strict runtime resource limits and requests
e Jobsareplacedin queues
e (ueuesare ordered by priority
e Scheduler decides when and how resources are allocated to each job

, [==l——————1|
¢ M=
= -
o =
(7]
O el

time

Background II.

Kubernetes (K8s) Scheduling

e Usersdeclare resource requests AND limits

e Schedulerimmediately tries to place the workload in the cluster
e Workloads may run for seconds, minutes... or months

e Resourcesremain allocated even if they are not fully used

=
.
time "

resources

Resource Utilization Effectivity
Traditional HPC Batch Clusters

Used vs Requested CPU Years by HPC Users (top 15)

OpenPBS

98%’ =71 Used CPU Year§
3500 A ; [Requested CPU Years
/ ! ! !
3000 %
2500 ,; 95%
g V1 | 7
00T e e E
2
e 77 |
1500 1 T ST SR (T -
[95% e
B N
20 R By
1000 ¢ ,// % 7_n 54%
SRR Z RN ZRRZRR% ;
TR ; A b Z 7 | % os% 91% 979 Ol 89% 84% o6
Z 0 99% % b 96%
A ain o an el gl W 7
0 / V —I .

userl user2 user3 userd4 user5 user6 user7 user8 user9 userlOuserlluserl2userl3userl4userl5

Average cluster utilization rate overall: ~ 80%
Real vs. Requested CPU years of the e-INFRA CZ PBSPro cluster users

Resource Utilization Effectivity

Kubernetes Clusters

100 = ; : : 5
—— #CPUs Allocatable | ‘ /

[#CPUs Requested
g0l #CPUs Real Usage

60

40

20 A

Number of CPUs Requested vs Real Usage

Average utilization rate: ~ 20% (compared to ~80% in HPC)
Real vs. Requested CPU utilization of the e-INFRA CZ Kubernetes cluster nodes

Problem Statement
Elasticity Without Sacrifices in the Cloud

e C(loud hosts multiclass workloads

o Interactive, batch, static workloads with “infinite” duration (microservices)

o Need for elasticity — automatically scale up and down in response to demand

e Auto-scalingis not suitable for all workload types
e C(lusters stay idle to guarantee SLA compliance — poor real utilization
e Evictions(Preemptions)result in wasted compute & lost workload state

e [efault K8s scheduler does not meet the needs of multi-purpose clusters

What if preemption didn't
mean losing progress but
new flexibility?

IASS: Interruption-Aware
Scheduling Strateqgy

Transparent Checkpoint/Restore + Novel Scheduling Strategy

Transparent Checkpoint/Restore

A New Scheduling Primitive?

e Non-Destructive Interruptions
o Backfilling: In this context, fill-in unused resources with lower-priority jobs and quickly vacate
resources (checkpoint) when they are needed
o Accommodate high-priority/urgent workloads without losing progress of preempted workloads

e [Dynamic workload migration across nodes

e Providing infrastructure-level fault tolerance

Transparent Checkpoint/Restore
Where Are We?

/

CR)Is

e Provided by the Linux utility CRIU

e Full processtree state is checkpointed to persistent storage
o CRIUinternally uses so-called parasitic code (injected via ptrace() call)

e Transparent — no modifications to application code or OS kernel required

e After checkpointing, container can be
o Leftrunning — fault tolerance

o Leftstopped — freeresources

10

https://criu.org/Main_Page

Transparent Checkpoint/Restore
Why Not Other Alternatives?

e DMTCP, BLCR

o Requires workflow modifications: must be dynamically linked at application startup time

e Application-level C/R

o No general solution: must be implemented for each application

e MicroVMs

o Promising but not Kubernetes-native and introduces extra overhead

mp [ransparent container C/R provided by CRIU

o Fully transparent: no workflow modifications required
o App-agnostic and lightweight
o Kubernetes-native

11

Interruption-Aware Scheduling Strategy
Novel Scheduling Strategy + C/R

e Scheduleris dynamic, threats interruptions and
changes in the scheduling plan as a core functionality

e Key points
o Checkpointing workloads to free resources on-demand E CR"J

o Restoring workloads when resources are available
o Preempted applications are checkpointed rather than killed

o Supports migration, survivable evictions and fault tolerance

12

Interruption-Aware Scheduling Strategy
CRIU Integration Within the K8s Stack

| Kubernetes Controller |------------------ ! @ Restore
; o -] |
! kube-scheduler apiserver] Buildah
i " - __Checkpo‘nt --------
:|kube-controller-manager] ; . N (push)
L D _COﬂIgAJSOI'I y
TNodel g]e- _ '
KBS StaCk kubelet - Buildah | | Checkpoint
W (commit) Image

reg-files.img

5 ¥

i | containerd / CRI-O }é
: v /
i [runc/crun |

core-%u.img

pagemap-%u.img

H H pages.img
[Pod| Pod [Pod} inotify.img]
pipes.img]

pipes-data.img

tmpfs-dev-%u.tar.gz.img

|
1
1
1
|
1
1
|
1
1
1
1
1
1
1
|
|
1
1
|
|
1
1
1
1
|
1
1
|
1
1
|
1
1
1
1
1
[
Y

(1) Checkpoint

Image Source: Radostin Stoyanov, et. al., "Preemptive Scheduling of Stateful GPU Intensive HPC Applications in Kubernetes", International Workshop on Containers and New Orchestration 13
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). 2023 (full presentation slides)

https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://radostin.io/files/Preemptive-Scheduling-CANOPIE-HPC-2023.pdf

Interruption-Aware Scheduling Strategy

Novel Scheduling Strategy - Queues

New pod
——]

BackOffQ

ActiveQ

H Pop

Scheduling
impl.

moveRequest /
flushUnschedulableQLeftover
————————————]

UnschedulableQ

Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable

Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

Image source

14

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Interruption-Aware Scheduling Strategy

Novel Scheduling Strategy - Queues

Modified Queue Ordering »,

New pod

— ActiveQ

H Pop

Scheduling
impl.

ﬂ Success

Failed Failed

moveRequest /

BackOffQ

flushUnschedulableQLeftover
————————————]

UnschedulableQ

Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable

Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

Image source

15

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Interruption-Aware Scheduling Strategy

Novel Scheduling Strateqgy - Scheduler

New pods go
through

PreEnqueue
plugins

PreEnqueue

New pods gated

Pod Scheduling Context

/

\

PreFilter

Pick a Pod from
scheduling
queue

Run #1

. | Filter

Run#2_|

19)j143s0d

PreScore
Score

Normalize
Score

Reserve a
Node for the
Pod in Cache

Reserve

Permit

~

Scheduling Cycle

4

:> Extensible API

..........

. | Internal AP
Bind Pod to
Node
o)
1 -
SE -
2o c
e | E m
P 2| m o -
I £ 3
=0 Ta m o
\ Binding Cycle /

Image source

Kubernetes scheduling is represented as scheduling framework consisting of extensible phases

16

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Interruption-Aware Scheduling Strategy

Novel Scheduling Strateqgy - Scheduler

Checkpoint integration o } Internal API
in PostFilter phase o~ Pod Scheduling Context 7
4 N\ / \ / \
: v
Pick a Pod from o R .
New pods go scheduling g'.ﬁ NEZ:?:, ?he Bind Pod to
through Queue = Pod in Cache Bode
PreEnqueue 2
0 0 P E
z 3 g N o N - 2
g 215 ; ol (5| |E|||IGi|E 5
2 5| | 2 3 Esl |8 [E||[i3!|%]|z2]|2
] o ic o 20 (4 o =N e [} o
n I’" s
ﬂg
New pods gated S|iS: Scheduling Cycle Binding Cycle
Y, \ @i . L %
E.g. Prefer nodes with more “restored” workloads Image source

Kubernetes scheduling is represented as scheduling framework consisting of extensible phases 17

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Current State
Can K8s Support C/R-based Scheduling?

e CRIU
o Stable enough to support simple use-cases
o Support C/R for GPU workloads!"

e Kubernetes support as forensic container checkpointing

o Both checkpoint and restore technically work but are not integrated into scheduling

e Additional tools and frameworks supporting the C/R ecosystem
o Kubernetes checkpoint-restore-operator to help managing checkpoints

o End-to-end encryption for container checkpoints

o Coordinated checkpointing of distributed applications

[1] Radostin Stoyanov et al. CRIUgpu: Transparent Checkpointing of GPU-Accelerated Workloads, 2025. arXiv

18

https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://github.com/checkpoint-restore/checkpoint-restore-operator
https://arxiv.org/abs/2502.16631

Current State ﬁﬁﬁ

C ha I I e ng eS to Rea I IZI ng IASS Is the restored workload the original one or a new one?

(Ship of Theseus Paradox)

Lack of upstream API for restoration

Design & Architecture
Missing Kubernetes design of restored workload

a= - dx

Networking [74 Container IP address must remain the same to re-establish TCP connections
— Load balancers or provided by overlay network

Security ['4 Security by design
— CRIUSec (E2E encryption scheme)!!]
— Integration into K8s

Cost Awareness [4 Storage demands of checkpoints, time to take them
— checkpoint-restore operator

Policies ¢ C/Rusertransparency and relations to external world

19

[1]1Radostin Stoyanov, Adrian Reber, Daiki Ueno, Michat Clapinski, Andrei Vagin, and Rodrigo Bruno. Towards Efficient End-to-End Encryption for Container Checkpointing Systems

https://github.com/checkpoint-restore/checkpoint-restore-operator
https://doi.org/10.1145/3678015.3680477

Opportunities & Future Work

What's Next?

e Incremental adoption
o C/R path for limited number of workloads, e.g. for ones with small checkpoint sizes

e Introducing new scheduling policies
o Preempting long-running jobs for sudden bursts, e.g. new Priority Class

e Collaborations and discussions within the Kubernetes community

20

Conclusion

On the Edge of Tomorrow

e Integrating C/R with the Kubernetes scheduler can improve resource utilization
and increase overall flexibility
e Interruptions don't have to result in wasted resources

e Especially valuable for multi-purpose clusters

e

Image source

21

https://thenerdsofcolor.org/2014/06/09/the-time-travel-and-ending-of-edge-of-tomorrow-explained/

Thank you!

Ouestions?

Contact: kBs@ics.muni.cz

criu.org
docs.cerit-sc.cz
github.com/checkpoint-restore/criu

mailto:k8s@ics.muni.cz
https://criu.org
https://docs.cerit-sc.cz
https://github.com/checkpoint-restore/criu/tree/criu-dev

