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Kubernetes Scheduling with
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Challenges & Open Problems
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Background I.

Traditional HPC Batch Scheduling

e Workloads are submitted as jobs
o with strict runtime resource limits and requests
e Jobsareplacedin queues
e (ueuesare ordered by priority
e Scheduler decides when and how resources are allocated to each job
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Background II.

Kubernetes (K8s) Scheduling

e Usersdeclare resource requests AND limits

e Schedulerimmediately tries to place the workload in the cluster
e Workloads may run for seconds, minutes... or months

e Resourcesremain allocated even if they are not fully used
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Resource Utilization Effectivity
Traditional HPC Batch Clusters

Used vs Requested CPU Years by HPC Users (top 15)
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Average cluster utilization rate overall: ~ 80%
Real vs. Requested CPU years of the e-INFRA CZ PBSPro cluster users



Resource Utilization Effectivity

Kubernetes Clusters
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Average utilization rate: ~ 20% (compared to ~80% in HPC)
Real vs. Requested CPU utilization of the e-INFRA CZ Kubernetes cluster nodes



Problem Statement
Elasticity Without Sacrifices in the Cloud

e C(loud hosts multiclass workloads

o Interactive, batch, static workloads with “infinite” duration (microservices)

o Need for elasticity — automatically scale up and down in response to demand

e Auto-scalingis not suitable for all workload types
e C(lusters stay idle to guarantee SLA compliance — poor real utilization
e Evictions(Preemptions)result in wasted compute & lost workload state

e [efault K8s scheduler does not meet the needs of multi-purpose clusters



What if preemption didn't
mean losing progress but
new flexibility?



IASS: Interruption-Aware
Scheduling Strateqgy

Transparent Checkpoint/Restore + Novel Scheduling Strategy



Transparent Checkpoint/Restore

A New Scheduling Primitive?

e Non-Destructive Interruptions
o  Backfilling: In this context, fill-in unused resources with lower-priority jobs and quickly vacate
resources (checkpoint) when they are needed
o Accommodate high-priority/urgent workloads without losing progress of preempted workloads

e [Dynamic workload migration across nodes

e Providing infrastructure-level fault tolerance



Transparent Checkpoint/Restore
Where Are We?

/

CR)Is

e Provided by the Linux utility CRIU

e Full processtree state is checkpointed to persistent storage
o CRIUinternally uses so-called parasitic code (injected via ptrace() call)

e Transparent — no modifications to application code or OS kernel required

e After checkpointing, container can be
o Leftrunning — fault tolerance

o Leftstopped — freeresources
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https://criu.org/Main_Page

Transparent Checkpoint/Restore
Why Not Other Alternatives?

e DMTCP, BLCR

o Requires workflow modifications: must be dynamically linked at application startup time

e Application-level C/R

o No general solution: must be implemented for each application

e MicroVMs

o Promising but not Kubernetes-native and introduces extra overhead

mp [ransparent container C/R provided by CRIU

o Fully transparent: no workflow modifications required
o App-agnostic and lightweight
o  Kubernetes-native
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Interruption-Aware Scheduling Strategy
Novel Scheduling Strategy + C/R

e Scheduleris dynamic, threats interruptions and
changes in the scheduling plan as a core functionality

e Key points
o Checkpointing workloads to free resources on-demand E CR"J

o Restoring workloads when resources are available
o Preempted applications are checkpointed rather than killed

o Supports migration, survivable evictions and fault tolerance
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Interruption-Aware Scheduling Strategy
CRIU Integration Within the K8s Stack
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Image Source: Radostin Stoyanov, et. al., "Preemptive Scheduling of Stateful GPU Intensive HPC Applications in Kubernetes", International Workshop on Containers and New Orchestration 13
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). 2023 (full presentation slides)



https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://radostin.io/files/Preemptive-Scheduling-CANOPIE-HPC-2023.pdf

Interruption-Aware Scheduling Strategy

Novel Scheduling Strategy - Queues

New pod
—— ]

BackOffQ

ActiveQ

H Pop

Scheduling
impl.

moveRequest /
flushUnschedulableQLeftover
———————————— ]

UnschedulableQ

Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable

Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

Image source
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https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Interruption-Aware Scheduling Strategy

Novel Scheduling Strategy - Queues

Modified Queue Ordering »,
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Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable

Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

Image source
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https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Interruption-Aware Scheduling Strategy

Novel Scheduling Strateqgy - Scheduler
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Kubernetes scheduling is represented as scheduling framework consisting of extensible phases
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https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Interruption-Aware Scheduling Strategy

Novel Scheduling Strateqgy - Scheduler
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Kubernetes scheduling is represented as scheduling framework consisting of extensible phases 17


https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Current State
Can K8s Support C/R-based Scheduling?

e CRIU
o Stable enough to support simple use-cases
o Support C/R for GPU workloads!"

e Kubernetes support as forensic container checkpointing

o Both checkpoint and restore technically work but are not integrated into scheduling

e Additional tools and frameworks supporting the C/R ecosystem
o Kubernetes checkpoint-restore-operator to help managing checkpoints

o End-to-end encryption for container checkpoints

o Coordinated checkpointing of distributed applications

[1] Radostin Stoyanov et al. CRIUgpu: Transparent Checkpointing of GPU-Accelerated Workloads, 2025. arXiv
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https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://github.com/checkpoint-restore/checkpoint-restore-operator
https://arxiv.org/abs/2502.16631

Current State ﬁﬁﬁ

C ha I I e ng eS to Rea I IZI ng IASS Is the restored workload the original one or a new one?

(Ship of Theseus Paradox)

Lack of upstream API for restoration

Design & Architecture
Missing Kubernetes design of restored workload

a= - dx

Networking [74 Container IP address must remain the same to re-establish TCP connections
— Load balancers or provided by overlay network

Security ['4 Security by design
— CRIUSec (E2E encryption scheme)!!]
— Integration into K8s

Cost Awareness [4 Storage demands of checkpoints, time to take them
— checkpoint-restore operator

Policies ¢ C/Rusertransparency and relations to external world
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[1]1Radostin Stoyanov, Adrian Reber, Daiki Ueno, Michat Clapinski, Andrei Vagin, and Rodrigo Bruno. Towards Efficient End-to-End Encryption for Container Checkpointing Systems



https://github.com/checkpoint-restore/checkpoint-restore-operator
https://doi.org/10.1145/3678015.3680477

Opportunities & Future Work

What's Next?

e Incremental adoption
o C/R path for limited number of workloads, e.g. for ones with small checkpoint sizes

e Introducing new scheduling policies
o Preempting long-running jobs for sudden bursts, e.g. new Priority Class

e Collaborations and discussions within the Kubernetes community
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Conclusion

On the Edge of Tomorrow

e Integrating C/R with the Kubernetes scheduler can improve resource utilization
and increase overall flexibility
e Interruptions don't have to result in wasted resources

e Especially valuable for multi-purpose clusters

e

Image source
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https://thenerdsofcolor.org/2014/06/09/the-time-travel-and-ending-of-edge-of-tomorrow-explained/

Thank you!

Ouestions?

Contact: kBs@ics.muni.cz

criu.org
docs.cerit-sc.cz
github.com/checkpoint-restore/criu


mailto:k8s@ics.muni.cz
https://criu.org
https://docs.cerit-sc.cz
https://github.com/checkpoint-restore/criu/tree/criu-dev

