
Kubernetes Scheduling with
Checkpoint/Restore

Challenges & Open Problems

Viktória Spišaková (MU), Radostin Stoyanov (Oxford), Lukáš Hejtmánek (MU),
Dalibor Klusáček (CESNET), Adrian Reber (Red Hat), Rodrigo Bruno (ULisbon)

Background I.

● Workloads are submitted as jobs
○ with strict runtime resource limits and requests

● Jobs are placed in queues
● Queues are ordered by priority
● Scheduler decides when and how resources are allocated to each job

Traditional HPC Batch Scheduling

2

Background II.

● Users declare resource requests AND limits
● Scheduler immediately tries to place the workload in the cluster
● Workloads may run for seconds, minutes… or months
● Resources remain allocated even if they are not fully used

Kubernetes (K8s) Scheduling

3

Resource Utilization Effectivity
Traditional HPC Batch Clusters

4
Average cluster utilization rate overall: ~ 80%

Real vs. Requested CPU years of the e-INFRA CZ PBSPro cluster users

Resource Utilization Effectivity
Kubernetes Clusters

Average utilization rate: ~ 20% (compared to ~80% in HPC)
Real vs. Requested CPU utilization of the e-INFRA CZ Kubernetes cluster nodes

Nodes

5

Problem Statement

● Cloud hosts multiclass workloads
○ Interactive, batch, static workloads with “infinite” duration (microservices)

○ Need for elasticity -- automatically scale up and down in response to demand

● Auto-scaling is not suitable for all workload types

● Clusters stay idle to guarantee SLA compliance → poor real utilization

● Evictions (Preemptions) result in wasted compute & lost workload state

● Default K8s scheduler does not meet the needs of multi-purpose clusters

Elasticity Without Sacrifices in the Cloud

6

What if preemption didn't
mean losing progress but

new flexibility?

IASS: Interruption-Aware
Scheduling Strategy

Transparent Checkpoint/Restore + Novel Scheduling Strategy

Transparent Checkpoint/Restore

● Non-Destructive Interruptions
○ Backfilling: In this context, fill-in unused resources with lower-priority jobs and quickly vacate

resources (checkpoint) when they are needed
○ Accommodate high-priority/urgent workloads without losing progress of preempted workloads

● Dynamic workload migration across nodes

● Providing infrastructure-level fault tolerance

A New Scheduling Primitive?

Improving resource utilization without compromising elasticity

9

Transparent Checkpoint/Restore

● Provided by the Linux utility CRIU

● Full process tree state is checkpointed to persistent storage
○ CRIU internally uses so-called parasitic code (injected via ptrace() call)

● Transparent → no modifications to application code or OS kernel required

● After checkpointing, container can be
○ Left running → fault tolerance

○ Left stopped → free resources

Where Are We?

10

https://criu.org/Main_Page

Transparent Checkpoint/Restore

● DMTCP, BLCR
○ Requires workflow modifications: must be dynamically linked at application startup time

● Application-level C/R
○ No general solution: must be implemented for each application

● Micro VMs
○ Promising but not Kubernetes-native and introduces extra overhead

 Transparent container C/R provided by CRIU
○ Fully transparent: no workflow modifications required
○ App-agnostic and lightweight
○ Kubernetes-native

Why Not Other Alternatives?

11

Interruption-Aware Scheduling Strategy

● Scheduler is dynamic, threats interruptions and
changes in the scheduling plan as a core functionality

● Key points
○ Checkpointing workloads to free resources on-demand

○ Restoring workloads when resources are available

○ Preempted applications are checkpointed rather than killed

○ Supports migration, survivable evictions and fault tolerance

Novel Scheduling Strategy + C/R

12

CRIU Integration Within the K8s Stack

K8s stack

13

Interruption-Aware Scheduling Strategy

Image Source: Radostin Stoyanov, et. al., "Preemptive Scheduling of Stateful GPU Intensive HPC Applications in Kubernetes", International Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). 2023 (full presentation slides)

https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://radostin.io/files/Preemptive-Scheduling-CANOPIE-HPC-2023.pdf

Novel Scheduling Strategy – Queues

Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable
Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

Image source

14

Interruption-Aware Scheduling Strategy

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Image source

15

Interruption-Aware Scheduling Strategy

CheckpointedQ

moveRestoreRequest /

periodicFlush

Modified Queue Ordering

Novel Scheduling Strategy – Queues

Kubernetes has 3 scheduling queues: Active, Backoff, Unschedulable
Workloads in Backoff queue are expected to be scheduled soon and are polled in exponential manner.

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduling_queues.png

Novel Scheduling Strategy – Scheduler

Image source

16

Interruption-Aware Scheduling Strategy

Kubernetes scheduling is represented as scheduling framework consisting of extensible phases

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Novel Scheduling Strategy – Scheduler

Image source

17

Interruption-Aware Scheduling Strategy

Checkpoint integration
in PostFilter phase

E.g. Prefer nodes with more “restored” workloads

Kubernetes scheduling is represented as scheduling framework consisting of extensible phases

https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Current State

● CRIU

○ Stable enough to support simple use-cases

○ Support C/R for GPU workloads![1]

● Kubernetes support as forensic container checkpointing

○ Both checkpoint and restore technically work but are not integrated into scheduling

● Additional tools and frameworks supporting the C/R ecosystem
○ Kubernetes checkpoint-restore-operator to help managing checkpoints

○ End-to-end encryption for container checkpoints

○ Coordinated checkpointing of distributed applications

Can K8s Support C/R-based Scheduling?

18[1] Radostin Stoyanov et al. CRIUgpu: Transparent Checkpointing of GPU-Accelerated Workloads, 2025. arXiv

https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://github.com/checkpoint-restore/checkpoint-restore-operator
https://arxiv.org/abs/2502.16631

Challenges to Realizing IASS

Design & Architecture 💡 Lack of upstream API for restoration
💡 Missing Kubernetes design of restored workload

Networking ✅ Container IP address must remain the same to re-establish TCP connections
→ Load balancers or provided by overlay network

Security ✅ Security by design
→ CRIUSec (E2E encryption scheme) [1]

→ Integration into K8s

Cost Awareness ✅ Storage demands of checkpoints, time to take them
→ checkpoint-restore operator

Policies 💡 C/R user transparency and relations to external world

[1] Radostin Stoyanov, Adrian Reber, Daiki Ueno, Michał Clapiński, Andrei Vagin, and Rodrigo Bruno. Towards Efficient End-to-End Encryption for Container Checkpointing Systems 19

Current State
Is the restored workload the original one or a new one?

(Ship of Theseus Paradox)

https://github.com/checkpoint-restore/checkpoint-restore-operator
https://doi.org/10.1145/3678015.3680477

Opportunities & Future Work

● Incremental adoption
○ C/R path for limited number of workloads, e.g. for ones with small checkpoint sizes

● Introducing new scheduling policies
○ Preempting long-running jobs for sudden bursts, e.g. new Priority Class

● Collaborations and discussions within the Kubernetes community

What’s Next?

20

Conclusion

● Integrating C/R with the Kubernetes scheduler can improve resource utilization

and increase overall flexibility

● Interruptions don’t have to result in wasted resources

● Especially valuable for multi-purpose clusters

Image source
21

On the Edge of Tomorrow

https://thenerdsofcolor.org/2014/06/09/the-time-travel-and-ending-of-edge-of-tomorrow-explained/

Thank you!
Questions?

Contact: k8s@ics.muni.cz

criu.org
docs.cerit-sc.cz

github.com/checkpoint-restore/criu

mailto:k8s@ics.muni.cz
https://criu.org
https://docs.cerit-sc.cz
https://github.com/checkpoint-restore/criu/tree/criu-dev

