
Optimizing Resource Utilization for
Interactive GPU Workloads with

Container Checkpointing

Viktória Spišaková, Radostin Stoyanov

Supervisor: Prof. Rodrigo Bruno, Prof. Wes Armour

● GPU clusters have become the standard

● Competitive edge, accelerated time-to-results, and expanded
computational capabilities

● Expensive and potentially more scarce

Role of GPUs in Today’s Computing

2

https://www.reuters.com/technology/artificial-intelligence/us-ti
ghtens-its-grip-ai-chip-flows-across-globe-2025-01-13/

https://www.technologyreview.com/2025/01/24/1110526/china-deepseek
-top-ai-despite-sanctions/

https://www.reuters.com/technology/artificial-intelligence/us-tightens-its-grip-ai-chip-flows-across-globe-2025-01-13/
https://www.reuters.com/technology/artificial-intelligence/us-tightens-its-grip-ai-chip-flows-across-globe-2025-01-13/
https://www.technologyreview.com/2025/01/24/1110526/china-deepseek-top-ai-despite-sanctions/
https://www.technologyreview.com/2025/01/24/1110526/china-deepseek-top-ai-despite-sanctions/

GPU Workload Types

● HPC workloads: Computational physics, chemistry, fluid dynamics, etc.
○ Characteristics

■ Finish and release resources
■ Classic way of using GPU to accelerate computations

● Interactive workloads: JupyterHubs (web UI), AI inference (chatbots)
○ Characteristics

■ Running (potentially) indefinite: idle GPUs for extended periods of time
■ New class of GPUs workloads leading to different challenges

3

Challenges with GPU Workloads

● HPC workloads

○ Fault-tolerance - In large data centers (or large computations) failures/errors

happen all the time

● Interactive workloads

○ Demand for low-latency responses to user inputs

■ e.g. sub-millisecond latency with large models, human-computer

interaction with interactive systems under X ms

○ Effective utilization of resources

4

Multi-tenant, multi-purpose Kubernetes clusters for academic users in Czechia:

● 3072 CPU cores, 21 TiB memory, 41 GPU (A10, A40, A100, H100, L4)

● 450 users

● Containers provide reproducibility – crucial for research

Problem:

● Limited number of GPUs for growing number of users and workloads

Example from Practice: e-INFRA CZ

5

6

HPC Applications Avg Util Last Hour Avg Util Last Day Running

Interactive workloads

7

JupyterHub User 2 - GPU utilization (orange) and CPU (yellow)

JupyterHub User 1 - GPU utilization (purple) and CPU (grey)

Low GPU Utilization -
Optimization Techniques

8

Our observation:
• Low resource utilization
• Need for improving GPU utilization while preserving active sessions

Existing solutions:
Resource sharing

(increased effectivity)
Resource reclaim

(preemption)
Time slicing ✅ ❌

Resource sharing (MIG) ✅ ❌
GPU checkpoint/restore ✅ ✅

Transparent GPU Checkpointing
Overview of GPU Checkpointing Methods

9

Checkpointing via API Interception

10

Just-In-Time Checkpointing: Low Cost Error Recovery from Deep Learning Training Failures, Tanmaey Gupta, et. al., 2024
Checkpoint/Restart for CUDA Kernels, Niklas Eiling, et. al., 2023
Singularity: Planet-Scale, Preemptive and Elastic Scheduling of AI Workloads, Dharma Shukla, et. al., 2022
Cricket: A virtualization layer for distributed execution of CUDA applications with checkpoint/restart support, Niklas Eiling, et. al., 2021

Application

device-proxy
(client)

device-proxy
(server)

GPU Runtime
GPU Driver

IPC
channel

GPU
snapshot

CPU checkpoint

API call logs &
GPU memory

Application

device-proxy
(client)

device-proxy
(server)

GPU Runtime
GPU Driver

device-proxy
(server)

GPU Runtime
GPU Driver

initialize & replay

CPU restore

CPU
snapshot

Challenges with API Interception

11

● Performance overhead for each API call

● Logs host-to-device (H2D) memory transfers

● GPU model-specific implementation

● Works only with dynamic linking
○ Requires building PyTorch from source

Overhead of API calls interception during
neural network training with PyTorch

GPU Checkpointing with CRIU
Transparent and Unified GPU Snapshots

12

● Transparent checkpointing for Linux containers

● Implemented entirely in userspace

● Integrated with Docker, Podman and Kubernetes

● GPU support via AMD and CUDA plugins

Checkpoint/Restore in Userspace

13

CUDA Checkpoint/Restore

14

Container

Application

ML Framework

Mapped CUDA
libraries & driver

Container
runtime

CRIU

CUDA Plugin

OS Kernel

NVIDIA GPU Driver(s)

GPU0 GPU1 GPU2 GPU3

Storage

CUDA
Driver

cuda-checkpoint

github.com/nvidia/cuda-checkpoint
github.com/checkpoint-restore/criu/tree/criu-dev/plugins/cuda

• Fully-transparent checkpoint/restore

• No API call interception

• No memory transfer logs

• Works for static & dynamic linking

• All GPU models are supported

https://github.com/nvidia/cuda-checkpoint
https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins/cuda

GPU Container Checkpointing

15

Optimizing Resource Utilization

16

Node

Pod Pod

Kubernetes Controller

kube
apiserverkube-scheduler

kube-controller-manager

etcd

Pod

CRIU
inventory.img

reg-files.img

core-%u.img

pagemap-%u.img

pages.img

inotify.img

pipes.img

pipes-data.img

tmpfs-dev-%u.tar.gz.img

Container

Container Runtime

Container Engine

descriptors.json

config.json

…

devshm-checkpoint.tar

Buildah
(commit)

OCI Checkpoint
Image

Buildah
(push)

Container Registry

img1 img2 imgn…

Pod

Kubernetes Container Snapshots

CRI-O

kubelet

runc

Checkpoint

Container Restore

Container Checkpoint

GPU state

kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha
developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu

https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu/

17

https://youtu.be/40qKIU1pj88
https://youtu.be/40qKIU1pj88

Evaluation Results

18

What factors determine checkpoint & restore latencies?

What are the scalability implications of using multiple devices?

Performance Evaluation

19

In-memory checkpoint/restore
(A100 SXM4 80GB)

Restore from disk
(H100 PCIe 5.0 80GB HBM3)

Restore Times

20

• Data-parallel training increases
checkpoint size & restore times linearly

• Loading checkpoint data from disk to
host memory can be expensive

• Lock/Unlock times are negligible

H100 (PCIe 5.0 80GB HBM3)

Checkpoint Size

21

H100 (PCIe 5.0 80GB HBM3)
Checkpoint size is determined by:
• Number of Parameters (weights)

• Parameter Precision (FP32, FP16, FP8)

GPU vs host memory:
• 90% for GPT 2 Small (124M)

• 97% for Llama 3.1 (8B)

• Andrei Vagin (Google)

• Jesus Ramos, Steven Gurfinkel (NVIDIA)

• Felix Kuehling, Rajneesh Bhardwaj, David Yat Sin, Ramesh Errabolu (AMD)

• Adrian Reber (Red Hat)

• Lukáš Hejtmánek (Masaryk University)

Acknowledgements

22

Summary & Conclusion

● Fully-transparent GPU snapshots

● CUDA & AMD plugins for CRIU

● Integrated with Kubernetes

github.com/checkpoint-restore/criu
github.com/nvidia/cuda-checkpoint

https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins
https://github.com/nvidia/cuda-checkpoint

