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● GPU clusters have become the standard

● Competitive edge, accelerated time-to-results, and expanded 
computational capabilities

● Expensive and potentially more scarce

Role of GPUs in Today’s Computing
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https://www.reuters.com/technology/artificial-intelligence/us-ti
ghtens-its-grip-ai-chip-flows-across-globe-2025-01-13/ 
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GPU Workload Types

● HPC workloads: Computational physics, chemistry, fluid dynamics, etc.
○ Characteristics

■ Finish and release resources
■ Classic way of using GPU to accelerate computations

● Interactive workloads: JupyterHubs (web UI), AI inference (chatbots)
○ Characteristics

■ Running (potentially) indefinite: idle GPUs for extended periods of time
■ New class of GPUs workloads leading to different challenges
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Challenges with GPU Workloads

● HPC workloads

○ Fault-tolerance - In large data centers (or large computations) failures/errors 

happen all the time

● Interactive workloads

○ Demand for low-latency responses to user inputs

■ e.g. sub-millisecond latency with large models, human-computer 

interaction with interactive systems under X ms

○ Effective utilization of resources
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Multi-tenant, multi-purpose Kubernetes clusters for academic users in Czechia:

● 3072 CPU cores, 21 TiB memory, 41 GPU (A10, A40, A100, H100, L4)

● 450 users

● Containers provide reproducibility – crucial for research

Problem:

● Limited number of GPUs for growing number of users and workloads

Example from Practice: e-INFRA CZ
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HPC Applications Avg Util Last Hour    Avg Util Last Day         Running

Interactive workloads
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JupyterHub User 2 - GPU utilization (orange) and CPU (yellow)

JupyterHub User 1 - GPU utilization (purple) and CPU (grey)



Low GPU Utilization - 
Optimization Techniques
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Our observation:
• Low resource utilization
• Need for improving GPU utilization while preserving active sessions

Existing solutions:
Resource sharing

(increased effectivity)
Resource reclaim

(preemption)
Time slicing ✅ ❌

Resource sharing (MIG) ✅ ❌
GPU checkpoint/restore ✅ ✅



Transparent GPU Checkpointing
Overview of GPU Checkpointing Methods
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Checkpointing via API Interception
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Just-In-Time Checkpointing: Low Cost Error Recovery from Deep Learning Training Failures, Tanmaey Gupta, et. al., 2024
Checkpoint/Restart for CUDA Kernels, Niklas Eiling, et. al., 2023
Singularity: Planet-Scale, Preemptive and Elastic Scheduling of AI Workloads, Dharma Shukla, et. al., 2022
Cricket: A virtualization layer for distributed execution of CUDA applications with checkpoint/restart support, Niklas Eiling, et. al., 2021
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Challenges with API Interception
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● Performance overhead for each API call

● Logs host-to-device (H2D) memory transfers

● GPU model-specific implementation

● Works only with dynamic linking
○ Requires building PyTorch from source 

Overhead of API calls interception during 
neural network training with PyTorch



GPU Checkpointing with CRIU
Transparent and Unified GPU Snapshots
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● Transparent checkpointing for Linux containers

● Implemented entirely in userspace

● Integrated with Docker, Podman and Kubernetes

● GPU support via AMD and CUDA plugins

Checkpoint/Restore in Userspace
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CUDA Checkpoint/Restore
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github.com/nvidia/cuda-checkpoint
github.com/checkpoint-restore/criu/tree/criu-dev/plugins/cuda

• Fully-transparent checkpoint/restore

• No API call interception

• No memory transfer logs

• Works for static & dynamic linking

• All GPU models are supported

https://github.com/nvidia/cuda-checkpoint
https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins/cuda


GPU Container Checkpointing
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Optimizing Resource Utilization
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kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha
developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu

https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu/
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https://youtu.be/40qKIU1pj88
https://youtu.be/40qKIU1pj88


Evaluation Results
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What factors determine checkpoint & restore latencies?

What are the scalability implications of using multiple devices?



Performance Evaluation
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In-memory checkpoint/restore
(A100 SXM4 80GB)

Restore from disk
(H100 PCIe 5.0 80GB HBM3)



Restore Times
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• Data-parallel training increases 
checkpoint size & restore times linearly

• Loading checkpoint data from disk to 
host memory can be expensive

• Lock/Unlock times are negligible

H100 (PCIe 5.0 80GB HBM3)



Checkpoint Size
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H100 (PCIe 5.0 80GB HBM3)
Checkpoint size is determined by:
• Number of Parameters (weights)

• Parameter Precision (FP32, FP16, FP8)

GPU vs host memory:
• 90% for GPT 2 Small (124M)

• 97% for Llama 3.1 (8B)
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Summary & Conclusion

● Fully-transparent GPU snapshots

● CUDA & AMD plugins for CRIU

● Integrated with Kubernetes

github.com/checkpoint-restore/criu
github.com/nvidia/cuda-checkpoint

https://github.com/checkpoint-restore/criu/tree/criu-dev/plugins
https://github.com/nvidia/cuda-checkpoint

