Engine-Agnostic Model Hot-Swapping for
Cost-Effective LLM Inference

Radostin Stoyanov*
University of Oxford
Oxford, United Kingdom
radostin.stoyanov@eng.ox.ac.uk

Wesley Armour
University of Oxford
Oxford, United Kingdom
wes.armour@eng.ox.ac.uk

Abstract

The widespread adoption of Large Language Models (LLMs) has
led to an increased demand for large-scale inference services, pre-
senting a unique set of challenges for the HPC community. These
services are characterized by moderate-scale models that require
dedicating expensive GPUs to handle bursty inference requests,
leading to high costs and resource underutilization. In this paper, we
propose SwapServeLLM — a novel engine-agnostic hot-swapping
method for cost-effective inference. This model hot-swapping ap-
proach is enabled by recent driver capabilities for transparent GPU
checkpointing. SwapServeLLM optimizes resource utilization by
dynamically allocating GPU resources with two key mechanisms:
(1) a demand-aware preemption leveraging information about con-
current requests, and (2) efficient request routing with memory
reservation minimizing inference latency. Our evaluation demon-
strates that SwapServeLLM optimizes model loading for state-of-
the-art inference engines by 31X compared to vLLM and up to 29%
compared to Ollama, enabling cost-effective inference.

CCS Concepts

« Computer systems organization — Cloud computing; - Soft-
ware and its engineering — Checkpoint / restart.

Keywords
Cloud Computing, Containers, LLM Inference, GPU Checkpointing

ACM Reference Format:

Radostin Stoyanov, Viktoéria Spisakova, Adrian Reber, Wesley Armour,
Marcin Copik, and Rodrigo Bruno. 2025. Engine-Agnostic Model Hot-
Swapping for Cost-Effective LLM Inference . In Workshops of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC Workshops °25), November 16-21, 2025, St Louis, MO, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3731599.3767354

*Also with Red Hat.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC Workshops °25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/2025/11

https://doi.org/10.1145/3731599.3767354

Viktoria Spisakova
Masaryk University
Brno, Czech Republic
spisakova@ics.muni.cz

Marcin Copik
ETH Zurich
Zurich, Switzerland
marcin.copik@inf.ethz.ch

Adrian Reber
Red Hat
Stuttgart, Germany
areber@redhat.com

Rodrigo Bruno
INESC-ID, Instituto Superior Técnico,
University of Lisbon
Lisbon, Portugal
rodrigo.bruno@tecnico.ulisboa.pt

—— Input —— Output Fri 8AM-5PM
g 15 w
3
£
Ez o
=
0 €
S 5
g /
S /
0 N
V‘\0(\ <02 ‘“eé P <« ot o
(a) Coding
Fri 8AM-5PM

8
2
3
£ 6
Ec |
52
oa=4
wE /
s /
g, ,
Q /

/
0 N
R <% \“eé < <« ot o

(b) Conversation

Figure 1: LLM token volume analysis illustrating the num-
ber of input (context) and output (generated) tokens over a
week for Coding and Conversational workloads in Microsoft
Azure [53], with a zoomed-in view highlighting the daily
usage patterns of a typical workday (Friday, 8 AM - 5 PM).

1 Introduction

The increasing popularity of Large Language Models (LLMs) is driv-
ing unprecedented demand for inference services across different
domains, from conversational bots [4, 17, 30, 37] and customer sup-
port agents [65] to programming assistants [21, 46]. These inference
services host multiple models running on expensive GPU acceler-
ators [9, 27, 58, 59] and often experience unpredictable bursts of
inference requests that fluctuate throughout the day [29, 41, 57, 64],
as illustrated in Figure 1. Even if invocations can be anticipated, the
compute and memory requirements are highly input-dependent.
Requests with a large number of input tokens and a small amount
of output tokens are compute-intensive, while those with few input
tokens and many output tokens are memory-bound [53, 72].

https://doi.org/10.1145/3731599.3767354
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731599.3767354

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

Radostin Stoyanov, et al.

200 16
g 214
£ 150 12
F125 =10
£ 100 58
» 75 o 6
2 50 g4
5% AN 82@@% %%
° D DD DD D DD QD 0
DD 2D D PP R @&%@%@@
AR U T & PN
LT o B YT O ,”> .”a & 7;-,,)’.‘»
6:?’&‘77’6 <SS S v‘v&e& ~ & ‘aq“é{‘&(@@&bz@&#\v S¥
elereeQ FE O %eéeq?o) » ,2557 ZQ(’ @Q»Q [SARCANCEN N N
< IS SR <
(a) vLLM (b) Ollama

HoR NN
o u o u

Cold-Start Time (s)

N

N

o u

(c) SGLang

(d) TensorRT-LLM

Figure 2: Cold-start latency including container startup and model loading on H100 (80 GB HBM3).

Serverless platforms such as SageMaker [3], KServe [8], and
Hugging Face [12] have emerged as a promising solution that al-
lows developers to upload their models and configurations, while
provisioning of the underlying infrastructure is fully automated.
This approach aims to reduce operational costs by sharing com-
pute resources between multiple workloads and avoiding expensive
long-term GPU reservations. However, a key challenge for these
serverless inference workloads is the attainment of strict latency
Service Level Objectives (SLOs) while minimizing operational costs
to remain economically viable [19, 69].

Furthermore, the autoregressive nature of inference workloads,
where each output token is generated sequentially based on pre-
viously generated tokens, coupled with the unpredictable output
lengths, makes it challenging to accurately estimate the compu-
tational requirements of each request [32, 40, 49]. This challenge
is further exacerbated by the heterogeneity across LLM models,
GPU architectures, and the variability of request types with inputs
ranging from short prompts to long documents [19, 20].

To adapt to fluctuating load, serverless platforms dynamically
adjust the number of inference engine instances for serving requests
(i-e., scaling in and out). However, the overheads of starting a new
instance are often intolerable if performed on the critical path
of request serving [10, 22, 48, 74]. As shown in Figure 2, these
overheads can take from tens of seconds to a few minutes across
inference engines. The cold-start latency of inference engines is
prolonged due to the large model sizes [6, 27] and high-throughput
optimizations that require complex initialization phase [23].

A practical solution proposed in the literature [69, 73] and adopted
by inference engines such as Ollama [31], relies on dynamic loading
of LLM models into GPU memory. However, these mechanisms
are tightly integrated with the GPU memory management func-
tionality of the inference engine and introduce additional overhead
in the critical path of request serving. These limitations prevent
high-throughput LLM engines such as vLLM [23] and TensorRT-
LLM [35] from easily adopting dynamic model loading.

An alternative approach of allocating dedicated GPUs has been
introduced in many cloud systems [62, 72, 73]. As shown in Fig-
ure 3, this approach often results in continuously reserved GPU
resources [51], while actual compute utilization remains low due
to insufficient incoming requests to fully utilize the allocated GPUs.
Consequently, service providers encounter a trade-off between
adopting a cost-effective serverless approach with high cold-start
latencies, and allocating dedicated GPU resources with continu-
ously running inference engines to meet SLO requirements.

In this work, we explore a novel engine-agnostic approach to
LLM model hot-swapping for cost-efficient inference serving. Our
approach leverages NVIDIA’s driver capabilities for transparent
checkpoint/restore of GPU workloads [52, 55, 56], in combination
with the Linux cgroup freezer mechanism [13, 43], to suspend and
resume containerized applications. This approach enables transpar-
ent host-to-GPU hot-swapping of inference workloads that works
across different models and engines [54]. We design and imple-
ment SwapServeLLM by integrating this hot-swapping mechanism
with an OpenAl-compatible request router, a demand-aware pre-
emption policy, and GPU memory reservation mechanism to pro-
vide an engine-agnostic framework for efficient LLM serving. This
framework provides a platform that reduces cold-start latency and
improves GPU utilization while optimizing the cost-efficiency of
multi-model deployments across heterogeneous inference engines.

We evaluate SwapServeLLM with a state-of-the-art inference en-
gines (vLLM [23], Ollama [31], SGLang [75], and TensorRT-LLM [35])
and using a set of LLaMA, DeepSeek, and Gemma models with dif-
ferent sizes, architectures, and quantization running on A100 (SXM4
80GB) and H100 (HBM3 80GB) GPUs. Our evaluation results show
that for larger DeepSeek-R1 14B FP16 models, SwapServeLLM is
about 29% faster than the cold-start latency of baseline Ollama,
while with smaller LLaMA 3.2 1B FP16 model, it is approximately
2.6 faster. When compared to cold-start latencies with vLLM,
SwapServeLLM significantly reduces the overhead associated with
model loading, resulting in a speedup of approximately 18X to 31x
faster than cold-start times, depending on the model size and GPU
memory usage. These results show that SwapServeLLM enables
cost-efficient inference deployments with larger number of LLM
models running on fewer GPUs. Our framework is open source and
available at https://github.com/rst0git/SwapServeLLM.

In summary, we make the following contributions:

o Characterize the initialization phase and model loading meth-
ods of state-of-the-art inference engines and analyze the
trade-offs and limitations of different strategies for efficient
model serving (§2).

e Propose SwapServeLLM, an engine-agnostic model hot-swapping

framework for LLM inference (§3).

¢ Introduce a dynamic memory reservation mechanism and
demand-aware preemption policy for efficient request serv-
ing with SwapServeLLM (§4).

o Evaluate SwapServeLLM with four inference engines (vVLLM,
Ollama, SGLang, TensorRT-LLM) and a set of DeepSeek,
LLaMA, and Gemma models with different architectures,
sizes, and quantization (§5).

https://github.com/rst0git/SwapServeLLM

Engine-Agnostic Model Hot-Swapping for Cost-Effective LLM Inference

2 Background and Motivation

In this section, we begin by highlighting the challenges with model
loading for inference serving. We then provide an overview of the
methods for efficient and on-demand model loading.

2.1 Challenges with Inference Serving

With the proliferation of specialized LLM models, efficient multi-
plexing of inference requests has become crucial [28]. For example,
organizations and inference providers maintain multiple models
designed for tasks such as math and science reasoning, handling of
text and images, faster inference, as well as code analysis and gener-
ation. However, in today’s commercial platforms, inference serving
with custom, fine-tuned models is more expensive than base models
due to several challenges that lead to increased memory footprint
and low resource utilization [20, 38, 68].

Inefficient GPU Utilization. A naive approach for inference
serving with multiple LLM models is to dedicate a group of GPUs
for each model. As shown in Figure 3, this approach is particu-
larly inefficient when the number of inference requests is sporadic
and low in volume, as it limits the batch size and leads to high
operational costs. Efficiently allocating and distributing workloads
across GPUs is crucial to avoid resource underutilization and enable
cost-efficient inference serving. In some cases, maximizing GPU
utilization requires assigning models to suboptimal GPU configu-
rations. Although this may not be ideal for individual models or
requests, it ultimately improves the overall performance [20].

High Model Loading Latency. Conventional model loading
approaches incur significant overheads due to the expensive ini-
tialization phase for high-throughput LLM inference, as shown in
Figure 2. For instance, loading LLaMA 3.1-8B takes 87 seconds with
vLLM and 124 seconds with TensorRT-LLM on H100 GPU. This
overhead far exceeds the latency requirements for token genera-
tion, with industry target for high-quality interactive experience
typically below the average human reaction time in the range of
200-250 ms [41]. The unpredictable nature of model invocations
further prevents effective prefetching as it is hard to predict when
a request for particular model will arrive. These limitations result
in prolonged first-token latency and inefficient GPU utilization.

LLM Serving with Heterogeneous Engines. Inference service
providers often need to support multiple engines and configurations
to optimize for different use-cases (e.g., multi-turn conversions,
question answering, text summarization), as well as performance
requirements and hardware compatibility across a range of models
and deployment environments [11]. The distinct characteristics of
each engine stem from differences in the core design and architec-
ture. However, the memory management, scheduling and batching
strategies of multiple engines are often incompatible and this leads
to inefficient resource sharing [20, 63].

Autoscaling Inference Engines. Scaling LLM inference presents
unique challenges, as demand spikes require rapid GPU provision-
ing and session-aware load balancing. Although GPU utilization is
conventionally used as a metric for automatic scaling, workload-
specific performance metrics such as batch size, queue size, and
decode latencies have been shown to be more effective for autoscal-
ing of LLM inference engines [16]. These metrics are often more
reliable for traffic fluctuations across a range of GPU hardware

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

I I e 2
=75 S
70N A | I U S ST O £ O | VT R N [
g 50 | H § 502
= 9]
525 =
2 11 | R 2
5 o ; 05
01-10 01-15 01-20 01-25 01-30 02-04 02-09
. Zoomed-in View .
X : o
Seof [TV TVRTTLS e =
c 758
i >
) 40 777777777777777 “
g 77777 50%
20 25=
2 2
% 0 00
01-20 01-25
Time (2025)

Figure 3: The GPU utilization and memory consumption
during serving of six models in the e-INFRA CZ Kubernetes
cluster with single NVIDIA H100, used by a small group of
academics and researchers over a month.

setups. However, the high cold start latencies of LLM engines re-
main a challenge, significantly reducing elasticity [14, 53].

2.2 Efficient Model Loading for Inference

The massive size of LLM models creates a bottleneck in both I/O
and CPU-bound operations, making efficient model loading crucial
for inference engines to minimize cold-start latency. Modern for-
mats such as SafeTensors [18] enable memory-mapping (zero-copy)
optimizations, allowing the model weights to be loaded directly
into GPU memory without an intermediate copy. When these tech-
niques are combined with model sharding (splitting the model into
multiple smaller files) and parallel loading, they significantly re-
duce I/0 bottlenecks and maximize the utilization of available GPU
bandwidth. To further reduce cold-start latency, techniques such
as quantization are often integrated to compress the model size
through lower-precision data types. While these techniques re-
duce I/O bottlenecks, runtime optimizations such as graph capture
(recording GPU operations into CUDA or HIP graphs) [33, 34], just-
in-time (JIT) compilation (compiling optimized kernels specific to
the model and hardware) [36], and speculative decoding (using a
smaller auxiliary model to propose token sequences for parallel
validation) [24], introduce significant initialization overheads. This
results in a fundamental tradeoff between minimizing cold-start
latency and achieving high-throughput inference, as the cost of
these runtime optimizations is typically too large to be tolerable
on the critical path of serving requests [53].

2.3 On-Demand Model Loading

On-demand model swapping enables inference engines to serve
multiple models concurrently with limited GPU memory by dy-
namically loading requested models. Inference engines such as
Ollama [31] adopt this mechanism through llama.cpp runners [15].
Each runner handles requests for a single model and aims to max-
imize availability without requiring all models to fit in memory
simultaneously. When the available GPU memory is insufficient to
load a model, the Ollama scheduler selects which models to unload.
The scheduler continuously tracks all active runners and prioritizes

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

unloading least recently used (LRU) runners. This approach enables
multi-model serving of concurrent requests by keeping only ac-
tive models in GPU memory. However, it relies on the fast model
loading and initialization of llama.cpp, which comes at the cost of
sacrificing runtime optimizations. An initial performance analysis
of Ollama by Red Hat researchers [60] shows that this leads to
significantly lower throughput when compared to highly optimized
inference engines such as vLLM [23] and TensorRT-LLM [35]. Thus,
realizing cost-efficient inference serving requires addressing the
aforementioned challenges while maintaining runtime optimiza-
tions.

3 Engine-Agnostic Model Swapping

At a high level, our goal is to provide an efficient, engine-agnostic
mechanism that dynamically loads and swaps LLM models on de-
mand while preserving the performance benefits of optimizations
such as CUDA graph capture and JIT compilation. We enable hot-
swapping via transparent GPU checkpointing [56] by creating infer-
ence engines snapshots immediately after LLM models have been
initialized. This approach is decoupled from specific engine imple-
mentations and allows to resume inference serving upon request
arrival without the costly overhead of reinitialization.

3.1 System Overview

Figure 4 shows the system architecture of SwapServeLLM. It con-
sists of the following main components: OpenAI API router, request
handler, model workers, scheduler, task manager, GPU monitor, and
LLM engine controller. The router provides an OpenAl-compatible
API endpoint that acts as a proxy, multiplexing inference requests
for multiple models and inference engines (backends). On arrival,
each inference request is added to a queue for processing by the
request handler. The request handler is responsible for accepting
incoming requests, creating response channel objects, and enqueu-
ing both to a backend queue. Each backend has a model worker
instance that reads from its queue, and forwards requests and re-
sponses between the inference engine and connected clients. If the
backend has been swapped out when an inference request arrives,
the worker issues a request to the scheduler to resume its execution.
The scheduler then reserves the required GPU memory with the
task manager. When necessary, the task manager identifies suit-
able candidates for preemption. It uses the GPU monitor to observe
memory utilization and inform the scheduling decisions. Once the
requested GPU memory becomes available, the scheduler triggers
a swap-in operation via the engine controller. The engine controller
then restores the backend GPU state and resumes its execution,
allowing to continue processing requests without incurring the
overhead of full reinitialization.

3.2 SwapServeLLM Initialization

The initialization phase of SwapServeLLM begins with loading of a
configuration that specifies runtime parameters and list of models.
Each model configuration is then validated to verify that all required
parameters have been specified and supported by SwapServeLLM.
Once the configuration has been validated, SwapServeLLM ini-
tializes the task manager and GPU monitor, obtaining informa-
tion about the system continuously monitoring GPU utilization.

Radostin Stoyanov, et al.

() Monitoring Utilization

R
, O o™
Granting
Request o
LLM Engine GPU
-| i Controller Monitor

Hot-Swapping
| Model | Y
Worker |7 ‘ [LLaMA 3.1-8B]
[Model |, [SGlang
Worker | ‘!Deepseek—m—BB] GPU
Worker

[Gemma3-27B]

Task Manager

Inference
Requests
e —

OpenAl API
Router
Enqueue
Requests

Request
Handler

Mapping Requests
to Worker

Worker | "
@ Processing Lorer | Forwarding
Requests Responses

TensorRT-LLM
(Llama-3.3-70B]

Figure 4: An overview of the SwapServeLLM architecture.
Modules in boxes with dashed border are on the critical path
of serving requests. All other modules do not impact serving
latency of models loaded in GPU memory. Numbered circles
correspond to the life-cycle of serving inference requests.

SwapServeLLM then initializes a worker and request queues for
each model, as well as inference engine backends as individual con-
tainers. Each model is configured with global and local parameters.
Global parameters include engine-specific options such as response
timeout, KV cache type, and authentication tokens, while local
parameters are model-specific options such as model name, con-
tainer image, GPU memory utilization, and initialization timeout.
During the initialization phase, SwapServeLLM creates and runs
a container for each configured model. Once the inference engine
and model have been fully initialized, it creates an in-memory snap-
shot of the GPU state and leaves the container in a paused state.
Information about container instances (e.g., unique identifier, IP ad-
dress, published TCP port) are stored in an index data structure that
during inference efficiently maps the model name to model worker
and inference backend. Once the task manager, model workers,
and inference backends have been fully initialized, SwapServeLLM
starts the request handler and OpenAlI API router to begin serving
requests.

3.3 Model Hot-Swapping Workflow

To address the challenges in Section 2, SwapServeLLM continuously
monitors the activity and resource utilization of LLM models and
selectively hot-swaps inference engines in and out of GPU memory
to effectively serve inference requests.

When incoming requests arrive for a model whose engine is not
currently running (i.e., not loaded in GPU memory), the OpenAlI
router and the request handler validate and accept the incoming
request (@) The request handler checks if the corresponding back-
end has available queue capacity and creates a response channel
with the associated metadata (@) The model workers actively
poll requests from their queue (@) and if on request arrival the
backend is not running, the worker makes a swap-in request to the
scheduler (@) The scheduler then obtains the required GPU mem-
ory needed to resume the model, and makes a reservation request
to the task manager ((5)). The task manager continuously monitors
the available GPU resources (@) and keeps track of memory reser-
vations with priority queue. The task manager is also responsible
for reclaiming GPU resources to accommodate new requests (@) If

Engine-Agnostic Model Hot-Swapping for Cost-Effective LLM Inference

not enough GPU memory is available, the engine controller applies
demand-aware preemption policy to select the best candidates to
swap-out (). Once enough GPU resources become available, the
memory reservation request is granted by the task manager. The
scheduler then triggers a swap-in operation for the corresponding
backend (@) When the swap-in operation completes, the model
worker verifies that the inference engine API is active, forwards
the enqueued request, and begins relaying responses directly to the
client, avoiding the overhead of request processing ().

3.4 Model Swapping Mechanism

When an inference request arrives and the corresponding backend
is not currently in a running state, a swap-in operation is used
to resume LLM serving without full model reinitialization. This
swap-in operation is performed asynchronously by model workers,
requesting the required GPU memory (previously saved during
the swap-out operation) via the task manager. The task manager
utilizes a priority queue for memory reservations to ensure that
multiple requests can be handled concurrently. For example, if
SwapServeLLM is running on a server with a single A100 GPU with
80GB of memory, and inference requests for Gemma 7B (requiring
16GB) and DeepSeek Coder 6.7B (requiring 14 GB) arrive at the
same time, both swap-in operations can be performed as sufficient
memory is available for both models to reside on the GPU. If a
request for LLaMA 3.3 70B FP8 (requiring 75 GB) subsequently
arrives, the task manager must enqueue the swap-in operation and
swap-out both Gemma and DeepSeek models to free the required
GPU memory before granting the memory reservation request.

3.5 Preemption Policy

Whenever a swap-in request for a model cannot be fulfilled due
to insufficient GPU memory, the task manager invokes a demand-
aware preemption policy implemented by the engine controller.
This policy iterates over currently running backends, using a two-
tiered hybrid metric to select candidates for eviction. The first tier
prioritizes backends with shorter request queues that are less likely
to disrupt ongoing user interactions. If multiple backends have
equal queue lengths, the second tier is applied. This tier priori-
tizes candidates based on the oldest last-accessed time, effectively
implementing a traditional least recently used (LRU) tie-breaker.

Each candidate for preemption is write-locked immediately be-
fore eviction to prevent race conditions with concurrent request
handling. This locking mechanism ensures that no new requests are
forwarded to the inference engine during the swap-out operation.
After completing each swap-out operation, the task manager checks
the available GPU memory and, once the memory requirement is
satisfied, grants the memory reservation request for the swap-in
operation. If insufficient memory is available after a swap-out op-
eration, the task manager attempts to evict the next best candidate
for preemption. This preemption policy allows SwapServeLLM to
dynamically adapt to workload patterns and to maximize through-
put while minimizing latency when serving multiple models with
constrained memory resources.

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

4 Implementation

We implement SwapServeLLM as a serverless LLM framework built
using the Go bindings for Podman [44], an open-source tool for man-
aging containerized workloads. This framework incorporates the
system components described in Section 3 and provides backends
for vLLM [23], Ollama [31], SGLang [75], and TensorRT-LLM [35].
We selected these engines to cover a wide range of deployment use-
cases: VLLM for high-throughput inference with optimized memory
management, Ollama for lightweight model hosting, SGLang for
structured generation and control over outputs, and TensorRT-LLM
for low-latency serving in production environments. The request
routing, queuing, and scheduling mechanisms are detailed in Sec-
tion 4.1, while additional information on the hot-swapping mecha-
nism and concurrent requests handling is provided in Section 4.2.

4.1 API Router and Request Handler

The SwapServeLLM API router is designed to efficiently serve con-
current requests across multiple inference engines and LLM models.
This component is implemented using Gin [26], a high-performance
web framework developed in Go, and provides an API endpoint com-
patible with the OpenAl specification [39]. It adopts a non-blocking,
asynchronous architecture that effectively decouples routing, re-
quest handling, and response generation to improve scalability,
reduce latency and maximize throughput. Upon receiving a request,
the router processes and validates its payload. It then extracts the
requested model name, verifies the corresponding backend avail-
ability, and queues the request for processing.

The request handler saves arrival timestamps and updates the
last-accessed metadata of each backend to keep track of utilization.
It then creates a dedicated response channel using an asynchro-
nous mechanism that enables low-latency communication between
the inference engine and the client. This channel allows for non-
blocking transmission of responses with real-time streaming. The
request handler then encapsulates the inference request, response
channel, and relevant metadata into an object that is enqueued in a
model-specific queue, as illustrated in Figure 4.

A per-model worker continuously monitors each queue, and
when requests arrive, it verifies that the client connection is still
active (i.e., not canceled due to disconnection), and forwards the
requests to the inference engine. This approach allows concurrent
processing of multiple requests, handling cancellations and time-
outs, and maximizing overall throughput, while the API router and
request handler accept and dispatch incoming requests without
blocking. If the backend for the requested model is not in a run-
ning state, the model worker coordinates with the scheduler, task
manager and engine controller. These components use per-model
synchronization mechanisms to reserve the required GPU memory
and perform swap-in operations concurrently.

4.2 On-demand Model Hot-Swapping

The hot-swapping functionality of SwapServeLLM is designed for
efficient GPU memory management through dynamic loading and
unloading of LLM inference engines. This mechanism ensures that
LLM models reside in GPU memory only when actively needed
and swapping them in with either explicit API calls or incoming
inference requests.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

40 Ollama (Disk) N
=71 Ollama (Memory)
301 o= SwapServelLM

20. N = IS

Model Loading (s)
o

(a) DeepSeek-R1 models

Radostin Stoyanov, et al.

w
o

B3 Ollama (Disk)
71 Ollama (Memory)
XY SwapServelLLM

N
v

N
o

-

=
o

Model Loading (s)
=
w
T

(b) LLaMA models

Figure 5: Comparison of Ollama model cold-start latencies when loading from disk, memory, and SwapServeLLM in-memory

snapshots on an NVIDIA A100 (SXM4 80 GB) server.

Model Preemption. When GPU memory is insufficient to per-
form a swap-in operation, the task manager utilizes a demand-
aware LRU policy to select candidates for preemption. This preemp-
tion operation utilizes a locking mechanism to signal the model
worker to stop forwarding inference requests. The task manager
then suspends CPU execution of the inference engine via the Linux
cgroup freezer mechanism and saves the amount of GPU memory in
use. It then creates an in-memory snapshot using the CUDA check-
point functionality, thus freeing GPU capacity for other workloads.
This preemption mechanism is further accelerated with engine-
specific optimizations, such as vLLM’s sleep API [61]. These op-
timizations efficiently unload the model weights to CPU memory
and reduce both GPU state size and checkpoint/restore latency.

5 Evaluation and Analysis

In this section, we evaluate the performance of SwapServeLLM
with a set of models and inference engines. Our evaluation aims to
answer the following question: How does the latency of on-demand
model hot-swapping with SwapServeLLM compare to the cold-start
latency of inference engines?

To address this questions, we first establish a performance base-
line by characterizing the cold-start latencies of several inference en-
gines (§5.2). We then measure the swap-in latency of SwapServeLLM
to demonstrate the efficiency of the model hot-swapping mecha-
nism (§5.3).

5.1 Experiment Setup

We use two server configurations to evaluate the performance of
SwapServeLLM. For the experiments in Figure 5, we use a system
with an NVIDIA A100 GPU (SXM4 80GB), 12-core Intel Xeon Gold
6342, 1 TB SSD, running Ubuntu 22.04 with kernel v6.2, CUDA 12.8,
and driver v570.86. For cold-start and swap-in latency measure-
ments in Figure 6 and Table 1, we use a server equipped with an
NVIDIA H100 GPU (HBM3 80GB), 26-core Intel Xeon Platinum
8480, 221 GB RAM, 2.8 TiB storage, running Ubuntu 22.04 with
kernel v6.8, Podman v5.7, runc v1.3, CUDA 13 and driver v580.65.

Models. We evaluate SwapServeLLM with a set of LLaMA,
DeepSeek, and Gemma models with varying sizes, architectures,
and quantization levels. For Figure 2, Figure 6 and Table 1 we used

vLLM v0.9.2, SGLang v0.4.9, Ollama v0.9.6, and TensorRT-LLM
v1.0rc0 inference engines. To obtain the evaluation results in Fig-
ure 5 we used Ollama v0.5.7.

Language Model Parameters. To ensure deterministic and
reproducible results, we set a fixed temperature and seed parameters
for all inference requests. This temperature parameter controls the
randomness (creativity) of the model’s output and influences how
it chooses among possible next tokens when generating text. By
setting the temperature value of all requests to 0, we instruct the
model to always pick the most likely next token and generate
consistent output.

5.2 Impact of Cold-Starts on Inference Latency

To establish a baseline for our evaluation, we first characterize the
cold-start latency of four state-of-the-art inference engines: vLLM,
Ollama, SGLang, and TensorRT-LLM, shown in Figure 2. These
results include both container startup and model initialization times,
highlighting cold-start latency across inference engines, ranging
from tens of seconds to a few minutes. For instance, loading LLaMA
3.1-8B takes 4.38 seconds with Ollama, 21.68 seconds with SGLang,
87.28 seconds with vLLM, and 124.48 seconds with TensorRT-LLM.

We further analyze a detailed breakdown of the initialization
times for vLLM across various models. We chose vLLM as it pro-
vides a set of optimizations for high-performance LLM serving that
balance memory efficiency, compute acceleration, and hardware
compatibility. The results in Table 1 show that runtime optimization
mechanisms, such as PyTorch kernel compilation and CUDA graph
capturing, are the two largest contributors to the overall initializa-
tion latency. As the model size increases, the times for these two
optimization steps also increase. These results highlight the impact
of runtime optimization mechanisms on the prolonged cold-start
latency of inference workloads.

In Figure 5, we analyze the model loading latency for several
DeepSeek-R1 and LLaMA models with Ollama and SwapServeLLM
on A100 GPU. In comparison to vLLM, SGLang, and TensorRT-LLM,
the Ollama inference engine is highly optimized for local deploy-
ments on consumer hardware and efficient use of limited GPU
memory. Thus, we chose this inference engine as the strongest
baseline as it has the lowest cold-start latency across models. For

Engine-Agnostic Model Hot-Swapping for Cost-Effective LLM Inference

these experiments, Ollama is configured with a default disk stor-
age as well as a memory-backed filesystem. The results show that,
across all models and quantization levels, the memory-backed stor-
age configuration outperforms the disk-based one, but remains
slower than SwapServeLLM. For the smallest model, DeepSeek-R1
1.5B, Ollama with loading from disk ranges from 4.7 to 11.3 sec-
onds, when loading from memory it is 2.46 to 2.72 seconds, and
SwapServeLLM loading mechanism is from 0.87 to 1.21 seconds.
This represents a 70-90% latency improvement compared to disk,
and a 50-60% when compared to memory. Medium size model,
such as DeepSeek-R1 7B and 8B, show disk latencies of approxi-
mately 13 - 40 seconds, memory latencies of 3.2-5 seconds, and
SwapServeLLM latencies of 1.48-3.39 seconds. These results reflect
similar latency improvement. Large models, such as DeepSeek-R1
14B, have disk latencies between 22.8 and 41.9 seconds, memory
latencies of 3.7-5 seconds, and SwapServeLLM latencies of 2.44—
3.68 seconds. These results indicate 80-90% and 25-35% improved
latency when compared to Ollama model loading from disk and
memory, respectively. These results also highlight the significant
impact of quantization level on loading times. For instance, models
with a lower bit-width (e.g., Q4) are smaller in size and thus load
considerably faster than those with a higher bit-width (e.g., Q8) or
unquantized FP16 models.

5.3 Hot-Swapping Latency of SwapServeLLM

We evaluate the hot-swapping effectiveness of SwapServeLLM by
measuring the swap-in latency when serving requests with vLLM
and Ollama inference backends. In comparison to the cold start
latency shown in Figure 2, this mechanism avoids the initializa-
tion phase of the inference engine and LLM model, and resumes
inference serving as described in Section 3.

As illustrated in Figure 6a, the swap-in latency with the vLLM
backend ranges from about 5.5 to 7.5 seconds. The corresponding
models utilize between 72 and 73 GB of GPU memory. These results
reveal a correlation between the size of occupied GPU memory
and the swap-in latency: smaller models like LLaMA-3.2 (1B FP16)
have swap-in latency of 5.5 seconds, whereas larger models, such as
DeepSeek-R1 (14B FP16), incur swap-in latencies of 7.5 seconds. In
comparison, vLLM cold-start times for these models range between
1 minute 41 seconds and 2 minutes 53 seconds, respectively. This
indicates that SwapServeLLM significantly reduces the overhead of
model loading compared to cold-start times, and the time needed
to resume inference serving primarily depends on the GPU mem-
ory utilized by the inference engine. In Figure 6b, we analyze and
compare the swap-in latency of SwapServeLLM with the model
loading times of Ollama. These results show that SwapServeLLM
consistently outperforms Ollama across different model sizes, with
swap-in latency in the range of 4.6 seconds for DeepSeek-R1 (14B
FP16) and 0.75 seconds for LLaMA 3.2 (1B FP16). The amount of
GPU memory utilized by these models is 30.5 GB and 3.6 GB, with
model loading times of 5.93 and 1.96 seconds, respectively.

6 Discussion

The evaluation results of SwapServeLLM show a significant re-
duction in model loading latency, with approximately 18x to 31x

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Model Total(s) Load(s) Compile(s) CG (s)
DS-14B 82.39 5.17 43.18 21.00
DS-8B 55.17 3.05 29.13 17.00
DS-7B 51.03 2.88 26.58 16.33
DS-1.5B 49.81 1.01 26.52 16.00
G3-27B 160.30 9.11 79.67 32.33
G3-12B 123.71 4.35 63.42 27.00
G3-4B 89.26 1.91 47.50 22.00
L3.1-8B 55.41 3.11 29.33 17.00
L3.2-3B 4941 1.48 26.38 16.00
L3.2-1B 34.14 0.85 16.85 14.00

Table 1: Baseline vLLM initialization time breakdown (in
seconds) for DeepSeek (DS), Gemma (G3), and LLaMA (L3)
models. Totalis the full engine initialization time. Load refers
to loading model weights. Compile is the torch.compile dura-
tion. CUDA Graphs (CG) is the capturing time.

speedup over vLLM and up to 29% compared to Ollama. This ap-
proach allows platforms to keep the benefits of high-performance
engines, such as vVLLM and TensorRT-LLM, with high elasticity by
quickly instantiating models through hot-swapping.

The key to these performance gains is the ability of SwapServeLLM
to bypass the time-consuming steps of engine and model initializa-
tion (e.g., PyTorch compilation and CUDA graph capture). As shown
in Table 1, these two steps are the largest contributors to overall
initialization latency for our vLLM baseline. By using transparent
GPU checkpointing to create an in-memory snapshot of the GPU
state immediately after a model has been initialized, SwapServeLLM
can restore the engine upon request without repeating these costly
phases. This approach enables hosting of a larger set of LLM models
on a reduced number of GPUs in multi-tenant environments, thus
mitigating the need for over-provisioning and long-term GPU reser-
vations. Such optimizations directly translate into lower operational
costs and improved resource utilization.

Multi-GPU Orchestration. As the size of LLM model weights
continues to grow, leveraging multiple GPUs becomes essential to
meet the computational requirements of inference services. Sin-
gle model inference on multi-GPU systems is typically achieved
through parallelization strategies such as tensor parallelism (TP),
pipeline parallelism (PP), data parallelism (DP), or hybrid approaches
combining these techniques. To effectively handle resource sharing
in multi-GPU systems, SwapServeLLM defines the GPU topology
of each inference engine (backend) during initialization, when GPU
resources are allocated. The subsequent preemption and swap-
in operations use similar memory reservation methods for each
GPU, as described above. To prevent memory overcommitment
during model swapping, memory reservations are managed using
scoped acquire-release semantics. Each model swapping operation
issues a reservation request followed by corresponding memory re-
lease signal, propagated upon eviction, where the task manager
is responsible for handling pending signals and allocations. This
approach maximizes resource utilization by enabling model hot-
swapping while avoiding contention across shared resources and
costly initialization overhead.

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

O
a 6 D
3 ¢
54 : \\ 4 e XX
< \\ <
g2 304 KKK S <
N 4
(%]
0
Y o\ o\ o\ o\ o\ o\
& ® & & & & KL
v Q v N N N N
) >) & & 2> <&
N ¥ Ol Ol ¥ N
N A RN
Y il > N R > &
% Q % & & A% K
& Q 9 R

(a) Swap-in latency with vLLM backend.

Radostin Stoyanov, et al.

23 Ollama Model Loading
W SwapServelLM Swap-in

Latency (seconds)

(b) Ollama (baseline) vs SwapServeLLM.

Figure 6: (a) On-demand swap-in latency with vLLM and (b) comparison between Ollama model loading and SwapServeLLM.

7 Related Work

Serverless inference systems. Platforms such as AWS Lambda [47],
Azure Functions [5], and Alibaba Function Compute [2], as well as
open-source systems such as KServe [8] provide support for server-
less inference. Many academic works attempt to optimize inference
serving in such serverless platforms [1, 7, 14, 25, 42, 45, 67, 71].
However, these systems focus primarily on resource efficiency and
scheduling, avoiding the cold-start problem or using caching poli-
cies, multi-tier storage systems, or predictive strategies to mitigate
it. In contrast, SwapServeLLM is the first work that focuses on
reducing the model loading times during inference serving with
containerized engine-agnostic hot-swapping.

Cold-start optimizations. Previous research explores mecha-
nisms for model swapping between CPU and GPU memory using
mechanisms however for SLO-aware scheduling and queuing poli-
cies with asynchronous GPU API redirection [50, 69, 70, 73]. These
approaches are implemented atop the Alibaba Cloud and SnowFlake
commercial serverless platforms and rely on proprietary infrastruc-
ture features. In contrast, SwapServeLLM is built on open-source
container runtime and integrates with state-of-the-art inference
engines. There are prior works on GPU runtimes implementing
cold-start optimizations that selectively restore essential states from
checkpoint images [66]. However, these works focus on general-
purpose snapshotting mechanism for serverless functions that cap-
tures both CPU and GPU states. In contrast, SwapServeLLM is
designed for accelerating the model loading times of LLM inference
serving workloads and leverages engine-specific optimizations.

8 Conclusion

The inherent challenges of inference serving in traditional deploy-
ments often lead to resource over-provisioning, inefficient GPU
utilization, and high operational costs. In this paper, we propose
SwapServeLLM, a framework for cost-efficient LLM serving with
an engine-agnostic model hot-swapping. SwapServeLLM leverages
recent driver capabilities for transparent GPU checkpointing, along
with a demand-aware preemption policy to enable dynamic swap-
ping of LLM models in and out of GPU memory. Our evaluation
results demonstrate that SwapServeLLM achieves a significant re-
duction in model loading latencies approximately 18x to 31X faster
than vLLM and 29% faster than Ollama. These optimizations enabled
with SwapServeLLM allow operators to deploy a larger number of
models with fewer GPUs, and to improve resource utilization in
multi-tenant environments.

Acknowledgments

We sincerely thank Jesus Ramos and Steven Gurfinkel for their
insightful feedback on the CUDA checkpointing functionality. We
would also like to thank Andrei Vagin and Lukas Hejtmanek for
their invaluable help. This work was supported in part by the Eu-
ropean Union’s Horizon Europe research and innovation program
under Grant Agreement No. 101189689.

References

[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. BATCH:
Machine Learning Inference Serving on Serverless Platforms with Adaptive
Batching. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1-15. doi:10.1109/SC41405.2020.00073

[2] Alibaba Cloud. 2025. Alibaba Cloud Function Compute. https://www.alibabacloud.
com/product/function-compute Accessed: 15-09-2025.

[3] Amazon Web Services. 2025. Amazon SageMaker. https://aws.amazon.com/
sagemaker Accessed: 15-09-2025.

[4] Anthropic. 2025. Claude. https://claude.ai.

[5] Microsoft Azure. 2025. Azure Al Foundry. https://ai.azure.com Accessed:
15-09-2025.

[6] Xiao Bi et al. 2024. DeepSeek LLM: Scaling Open-Source Language Models with
Longtermism. arXiv:2401.02954 [cs.CL] https://arxiv.org/abs/2401.02954

[7] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. 2022. Serving Heterogeneous Machine Learning Models on Multi-
GPU Servers with Spatio-Temporal Sharing. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 199-216. https:
//www.usenix.org/conference/atc22/presentation/choi- seungbeom

[8] Cloud Native Computing Foundation. 2025. KServe: Standardized Serverless ML
Inference Platform on Kubernetes. https://github.com/kserve/kserve. Accessed:
15-09-2025.

[9] DeepSeek-Al, Aixin Liu, Bei Feng, et al. 2025. DeepSeek-V3 Technical Report.
arXiv:2412.19437 [cs.CL] https://arxiv.org/abs/2412.19437

[10] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond Startup for Serverless
Computing with Initialization-less Booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Lausanne, Switzerland) (ASPLOS °20). Association for Com-
puting Machinery, New York, NY, USA, 467-481. doi:10.1145/3373376.3378512
Hugging Face. 2025. Deploy with your own container. https://huggingface.co/
docs/inference-endpoints/en/engines/custom_container. Accessed: 15-09-2025.
Hugging Face. 2025. Hugging Face Inference. https://huggingface.co/docs/
inference-providers/providers/hf-inference. Accessed: 15-09-2025.

Freezer Subsystem. 2025. Linux Kernel Documentation. https://www.kernel.org/
doc/Documentation/cgroup-v1/freezer-subsystem.txt. Accessed: 15-09-2025.
Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii Ustiugov,
Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-Latency Serverless In-
ference for Large Language Models. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara,
CA, 135-153. https://www.usenix.org/conference/osdi24/presentation/fu
Georgi Gerganov. 2025. llama.cpp. https://github.com/ggerganov/llama.cpp.
Google Cloud. 2025. Autoscaling Machine Learning Inference Workloads on
Google Kubernetes Engine. https://cloud.google.com/kubernetes-engine/docs/
best-practices/machine-learning/inference/autoscaling Accessed: 15-09-2025.
Google DeepMind. 2025. Gemini. https://gemini.google.com. Google’s multi-
modal chatbot integrated across Workspace and Search, hundreds of millions of

[11

[12

[13

[14

jperuny
o9

(17

https://doi.org/10.1109/SC41405.2020.00073
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker
https://claude.ai
https://ai.azure.com
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://www.usenix.org/conference/atc22/presentation/choi-seungbeom
https://github.com/kserve/kserve
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.1145/3373376.3378512
https://huggingface.co/docs/inference-endpoints/en/engines/custom_container
https://huggingface.co/docs/inference-endpoints/en/engines/custom_container
https://huggingface.co/docs/inference-providers/providers/hf-inference
https://huggingface.co/docs/inference-providers/providers/hf-inference
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/freezer-subsystem.txt
https://www.usenix.org/conference/osdi24/presentation/fu
https://github.com/ggerganov/llama.cpp
https://cloud.google.com/kubernetes-engine/docs/best-practices/machine-learning/inference/autoscaling
https://cloud.google.com/kubernetes-engine/docs/best-practices/machine-learning/inference/autoscaling
https://gemini.google.com

Engine-Agnostic Model Hot-Swapping for Cost-Effective LLM Inference

(18]

[19

[20

[
=

[22

[23

[24]

[25

[26]

[27

[28]

[33

[34]

[35]
[36]

[37
[38]

w
L

[40]

users.

Hugging Face. 2025. Simple, safe, zero-copy tensor storage. https://github.com/
huggingface/safetensors

Shashwat Jaiswal, Kunal Jain, Yogesh Simmhan, Anjaly Parayil, Ankur Mallick,
Rujia Wang, Renee St. Amant, Chetan Bansal, Victor Rithle, Anoop Kulkarni, Steve
Kofsky, and Saravan Rajmohan. 2025. Serving Models, Fast and Slow: Optimizing
Heterogeneous LLM Inferencing Workloads at Scale. arXiv:2502.14617 [cs.DC]
https://arxiv.org/abs/2502.14617

Youhe Jiang, Fangcheng Fu, Xiaozhe Yao, Guoliang He, Xupeng Miao, Ana
Klimovic, Bin Cui, Binhang Yuan, and Eiko Yoneki. 2025. Demystifying Cost-
Efficiency in LLM Serving over Heterogeneous GPUs. arXiv:2502.00722 [cs.DC]
https://arxiv.org/abs/2502.00722

Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a
Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI °24). Association for
Computing Machinery, New York, NY, USA, Article 650, 20 pages. doi:10.1145/
3613904.3642773

Sumer Kohli, Shreyas Kharbanda, Rodrigo Bruno, Joao Carreira, and Pedro Fon-
seca. 2024. Pronghorn: Effective Checkpoint Orchestration for Serverless Hot-
Starts. In Proceedings of the Nineteenth European Conference on Computer Systems
(Athens, Greece) (EuroSys "24). Association for Computing Machinery, New York,
NY, USA, 298-316. doi:10.1145/3627703.3629556

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAttention.
In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,
Germany) (SOSP ’23). Association for Computing Machinery, New York, NY, USA,
611-626. doi:10.1145/3600006.3613165

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast Inference from
Transformers via Speculative Decoding. In Proceedings of the 40th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 19274-19286.
https://proceedings.mlr.press/v202/leviathan23a.html

Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. 2022. Tetris:
Memory-efficient Serverless Inference through Tensor Sharing. In 2022 USENIX
Annual Technical Conference (USENLX ATC 22). USENIX Association, Carlsbad,
CA. https://www.usenix.org/conference/atc22/presentation/li- jie

Bo-Yi Wu Manu Martinez-Almeida, Javier Provecho et al. 2025. Gin Web Frame-
work. https://github.com/gin-gonic/gin

Meta AL 2025. LLaMA 4: Large Language Model. https://www.llama.com/models/
llama-4. Accessed: 15-09-2025.

Microsoft. 2024. How to Customize an LLM: A Deep Dive to Tailoring an
LLM for Your Business. https://techcommunity.microsoft.com/blog/azure-ai-
foundry-blog/how-to-customize-an-1lm- a-deep-dive-to- tailoring-an-llm-for-
your-business/4110204 Accessed: 15-09-2025.
Microsoft. 2025. Azure LLM Inference Traces.
AzurePublicDataset.

Microsoft. 2025. Copilot. https://www.bing.com/chat.

Jeffrey Morgan and Michael Chiang. 2025. Ollama. https://ollama.ai/.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. 2021. Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM. arXiv:2104.04473 [cs.CL] https://arxiv.org/abs/2104.04473
Chanh Nguyen. 2025. CUDA Graph Capture Support in vVLLM. https://github.
com/vllm-project/vllm/pull/16072

Vinh Nguyen, Michael Carilli, Sukru Burc Eryilmaz, Vartika Singh, Michelle Lin,
Natalia Gimelshein, Alban Desmaison, and Edward Yang. 2021. Accelerating
PyTorch with CUDA Graphs. https://pytorch.org/blog/accelerating-pytorch-
with-cuda-graphs/. Accessed: 15-09-2025.

NVIDIA. 2025. TensorRT-LLM: Accelerated Large Language Model Inference.
https://github.com/NVIDIA/TensorRT-LLM.

NVIDIA. 2025. TensorRT-LLM Build Workflow. https://nvidia.github.io/
TensorRT-LLM. Accessed: 15-09-2025.

OpenAl 2025. ChatGPT. https://chat.openai.com.

OpenAl 2025. OpenAl Pricing. https://openai.com/api/pricing Accessed: 15-09-
2025.

OpenAl 2025. Specification for the OpenAI APL https://platform.openai.com/
docs/api-reference Accessed: 15-09-2025.

Daon Park and Bernhard Egger. 2024. Improving Throughput-oriented LLM
Inference with CPU Computations. In Proceedings of the 2024 International Con-
ference on Parallel Architectures and Compilation Techniques (Long Beach, CA,
USA) (PACT °24). Association for Computing Machinery, New York, NY, USA,
233-245. doi:10.1145/3656019.3676949

https://github.com/Azure/

[41

[42

=
&

[47]

S
&

[49

[50

[51

o
A

[53

[54

o
2

[56

[57

[60

[61

[62]

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Pratyush Patel, Esha Choukse, Chaojie Zhang, et al. 2024. Splitwise: Ef-
ficient Generative LLM Inference Using Phase Splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA). Insti-
tute of Electrical and Electronics Engineers, Buenos Aires, Argentina, 118-132.
doi:10.1109/ISCA59077.2024.00019

Qiangyu Pei, Yongjie Yuan, Haichuan Hu, Qiong Chen, and Fangming Liu. 2023.
AsyFunc: A High-Performance and Resource-Efficient Serverless Inference Sys-
tem via Asymmetric Functions. In Proceedings of the 2023 ACM Symposium on
Cloud Computing (Santa Cruz, CA, USA) (SoCC °23). Association for Computing
Machinery, New York, NY, USA, 324-340. doi:10.1145/3620678.3624664
Podman Documentation. 2025. Pause one or more containers. https://docs.
podman.io/en/latest/markdown/podman-pause.1.html. Accessed: 15-09-2025.
Red Hat, Inc. 2025. Podman. https://podman.io/ Accessed: 15-09-2025.
Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 397-411.
https://www.usenix.org/conference/atc21/presentation/romero

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces (Sydney, NSW, Australia)
(IUT "23). Association for Computing Machinery, New York, NY, USA, 491-514.
doi:10.1145/3581641.3584037

Amazon Web Services. 2025. AWS Lambda. https://aws.amazon.com/lambda
Accessed: 15-09-2025.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Santa Clara, CA, 205-218.
https://www.usenix.org/conference/atc20/presentation/shahrad

Haihao Shen, Hanwen Chang, Bo Dong, Yu Luo, and Hengyu Meng. 2023. Efficient
LLM Inference on CPUs. arXiv:2311.00502 [cs.LG] https://arxiv.org/abs/2311.
00502

Snowflake. 2024. Snowflake LLM Inference: Model Hotswapping. https://www.
snowflake.com/engineering-blog/llm-interference-model-hotswapping/ Ac-
cessed: 15-09-2025.

Viktoria Spisakova, Radostin Stoyanov, Lukas Hejtmanek, Dalibor Klusacek,
Adrian Reber, and Rodrigo Bruno. 2025. Kubernetes Scheduling with Check-
point/Restore: Challenges and Open Problems. In Job Scheduling Strategies for
Parallel Processing. Springer Nature Switzerland.

Steven Gurfinkel. 2025. CUDA Checkpoint and Restore Utility. https://github.
com/NVIDIA/cuda-checkpoint.

Jovan Stojkovic, Chaojie Zhang, Iiiigo Goiri, Josep Torrellas, and Esha Choukse.
2025. DynamoLLM: Designing LLM Inference Clusters for Performance and
Energy Efficiency. In 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 1348-1362. doi:10.1109/HPCA61900.2025.00102
Radostin Stoyanov. 2025. Transparent Hot-Swapping of Containerized AI/ML
Workloads. In High Performance Container Workshop.

Radostin Stoyanov, Adrian Reber, and Viktoria Spisakova. 2025. Efficient Trans-
parent Checkpointing of AI/ML Workloads in Kubernetes. In KubeCon + Cloud-
NativeCon Europe 2025. https://kcenceu2025.sched.com/event/1tx7i

Radostin Stoyanov, Viktoria Spisakova, Jesus Ramos, Steven Gurfinkel, Andrei
Vagin, Adrian Reber, Wesley Armour, and Rodrigo Bruno. 2025. CRIUgpu: Trans-
parent Checkpointing of GPU-Accelerated Workloads. arXiv:2502.16631 [cs.DC]
https://arxiv.org/abs/2502.16631

Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and
Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large Language Model Serving.
In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24). USENIX Association, Santa Clara, CA, 173-191. https://www.usenix.
org/conference/osdi24/presentation/sun-biao

Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal Models.
arXiv:2312.11805 [cs.CL] https://arxiv.org/abs/2312.11805

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

Harshith Umesh. 2025. Ollama vs. vVLLM: A deep dive into performance bench-
marking. Red Hat Developers (8 Aug. 2025). https://developers.redhat.com/
articles/2025/08/08/ollama-vs-vllm-deep-dive-performance-benchmarking Ac-
cessed: 2025-08-14.

vLLM. 2025. Sleep Mode. https://docs.vllm.ai/en/latest/features/sleep_mode.html.
Accessed: 15-09-2025.

Jiali Wang, Yankui Wang, Mingcong Han, and Rong Chen. 2025. Colocating
ML Inference and Training with Fast GPU Memory Handover. In 2025 USENIX
Annual Technical Conference (USENIX ATC 25). 1657-1675.

https://github.com/huggingface/safetensors
https://github.com/huggingface/safetensors
https://arxiv.org/abs/2502.14617
https://arxiv.org/abs/2502.14617
https://arxiv.org/abs/2502.00722
https://arxiv.org/abs/2502.00722
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3627703.3629556
https://doi.org/10.1145/3600006.3613165
https://proceedings.mlr.press/v202/leviathan23a.html
https://www.usenix.org/conference/atc22/presentation/li-jie
https://github.com/gin-gonic/gin
https://www.llama.com/models/llama-4
https://www.llama.com/models/llama-4
https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/how-to-customize-an-llm-a-deep-dive-to-tailoring-an-llm-for-your-business/4110204
https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/how-to-customize-an-llm-a-deep-dive-to-tailoring-an-llm-for-your-business/4110204
https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/how-to-customize-an-llm-a-deep-dive-to-tailoring-an-llm-for-your-business/4110204
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://www.bing.com/chat
https://ollama.ai/
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://github.com/vllm-project/vllm/pull/16072
https://github.com/vllm-project/vllm/pull/16072
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/
https://github.com/NVIDIA/TensorRT-LLM
https://nvidia.github.io/TensorRT-LLM
https://nvidia.github.io/TensorRT-LLM
https://chat.openai.com
https://openai.com/api/pricing
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://doi.org/10.1145/3656019.3676949
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1145/3620678.3624664
https://docs.podman.io/en/latest/markdown/podman-pause.1.html
https://docs.podman.io/en/latest/markdown/podman-pause.1.html
https://podman.io/
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/3581641.3584037
https://aws.amazon.com/lambda
https://www.usenix.org/conference/atc20/presentation/shahrad
https://arxiv.org/abs/2311.00502
https://arxiv.org/abs/2311.00502
https://arxiv.org/abs/2311.00502
https://www.snowflake.com/engineering-blog/llm-interference-model-hotswapping/
https://www.snowflake.com/engineering-blog/llm-interference-model-hotswapping/
https://github.com/NVIDIA/cuda-checkpoint
https://github.com/NVIDIA/cuda-checkpoint
https://doi.org/10.1109/HPCA61900.2025.00102
https://kccnceu2025.sched.com/event/1tx7i
https://arxiv.org/abs/2502.16631
https://arxiv.org/abs/2502.16631
https://www.usenix.org/conference/osdi24/presentation/sun-biao
https://www.usenix.org/conference/osdi24/presentation/sun-biao
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://developers.redhat.com/articles/2025/08/08/ollama-vs-vllm-deep-dive-performance-benchmarking
https://developers.redhat.com/articles/2025/08/08/ollama-vs-vllm-deep-dive-performance-benchmarking
https://docs.vllm.ai/en/latest/features/sleep_mode.html

SC Workshops ’25, November 16-21, 2025, St Louis, MO, USA

[63]

[64]

[65]

[66]

[67]

[68

[69]

[70]

)
—

[72

[73

[74]

[75]

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi: An Efficient
Multi-Level Inference System for Large Language Models. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys '23).
Association for Computing Machinery, New York, NY, USA, 233-248. doi:10.
1145/3552326.3587438

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Yuchu Fang, Yeju Zhou, Yang
Zheng, Zhenheng Tang, Xin He, Rui Guo, Xin Wang, Qiang Wang, Amelie Chi
Zhou, and Xiaowen Chu. 2025. BurstGPT: A Real-world Workload Dataset to
Optimize LLM Serving Systems. arXiv:2401.17644 [cs.DC] https://arxiv.org/abs/
2401.17644

Zhentao Xu, Mark Jerome Cruz, Matthew Guevara, Tie Wang, Manasi Desh-
pande, Xiaofeng Wang, and Zheng Li. 2024. Retrieval-Augmented Generation
with Knowledge Graphs for Customer Service Question Answering. In Proceed-
ings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Washington DC, USA) (SIGIR °24). Association for Com-
puting Machinery, New York, NY, USA, 2905-2909. doi:10.1145/3626772.3661370
Yanning Yang, Dong Du, Haitao Song, and Yubin Xia. 2024. On-demand and
Parallel Checkpoint/Restore for GPU Applications. In Proceedings of the 2024 ACM
Symposium on Cloud Computing (Redmond, WA, USA) (SoCC ’24). Association
for Computing Machinery, New York, NY, USA, 415-433. doi:10.1145/3698038.
3698510

Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Keqiu Li. 2022. INFless: a native serverless system for low-
latency, high-throughput inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Lausanne, Switzerland) (ASPLOS °22). Association for Computing
Machinery, New York, NY, USA, 768-781. doi:10.1145/3503222.3507709
Xiaozhe Yao, Qinghao Hu, and Ana Klimovic. 2024. DeltaZip: Efficient Serving
of Multiple Full-Model-Tuned LLMs. arXiv:2312.05215 [cs.DC] https://arxiv.org/
abs/2312.05215

Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuohao Li, Wei
Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang. 2024. FaaSwap: SLO-Aware,
GPU-Efficient Serverless Inference via Model Swapping. arXiv:2306.03622 [cs.DC]
https://arxiv.org/abs/2306.03622

Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuohao Li,
Wei Wang, Ruichuan Chen, Dapeng Nie, Haoran Yang, and Yu Ding. 2025. Tor-
por: GPU-Enabled Serverless Computing for Low-Latency, Resource-Efficient
Inference. arXiv:2306.03622 [cs.DC] https://arxiv.org/abs/2306.03622
Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX
Association, Renton, WA, 1049-1062. https://www.usenix.org/conference/atc19/
presentation/zhang-chengliang

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. 2023. SHEP-
HERD: Serving DNNs in the Wild. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association, Boston, MA,
787-808. https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth Garg. 2020.
Model-Switching: Dealing with Fluctuating Workloads in Machine-Learning-as-
a-Service Systems. In 12th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 20). USENIX Association. https://www.usenix.org/conference/
hotcloud20/presentation/zhang

Yanqi Zhang, Tiiigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP 21). Association for Computing Machinery, New York, NY, USA,
724-739. doi:10.1145/3477132.3483580

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang,
Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. SGLang: Efficient Execution of Structured Lan-
guage Model Programs. arXiv:2312.07104 [cs.Al] https://arxiv.org/abs/2312.07104

Radostin Stoyanov, et al.

https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://doi.org/10.1145/3626772.3661370
https://doi.org/10.1145/3698038.3698510
https://doi.org/10.1145/3698038.3698510
https://doi.org/10.1145/3503222.3507709
https://arxiv.org/abs/2312.05215
https://arxiv.org/abs/2312.05215
https://arxiv.org/abs/2312.05215
https://arxiv.org/abs/2306.03622
https://arxiv.org/abs/2306.03622
https://arxiv.org/abs/2306.03622
https://arxiv.org/abs/2306.03622
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/nsdi23/presentation/zhang-hong
https://www.usenix.org/conference/hotcloud20/presentation/zhang
https://www.usenix.org/conference/hotcloud20/presentation/zhang
https://doi.org/10.1145/3477132.3483580
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

Engine-Agnostic Model Hot-Swapping for Cost-Effective LLM Inference

SC Workshops 25, November 16-21, 2025, St Louis, MO, USA

Appendix: Artifact Description

Artifact Description (AD)

1 Overview of Contributions and Artifacts
1.1 Paper’s Main Contributions

C; A framework that enables cost-efficient inference serving
with engine-agnostic scheme for LLM model hot-swapping,
leveraging the pause/resume functionality of container run-
times in combination with transparent GPU checkpointing.

C, SwapServeLLM — a prototype of the engine-agnostic model
hot-swapping framework designed to efficiently handle con-
current inference requests with multiple engines (backends)
and models.

Cs Extension to SwapServeLLM that integrates a demand-aware
preemption policy and dynamic GPU memory reservation
mechanism to optimize resource utilization and minimize
inference latency.

C; An extensive evaluation, comparing SwapServeLLM with
cold-start and model loading latencies of four state-of-the-art
inference engines (vLLM, Ollama, SGLang, TensorRT-LLM)
across multiple LLM models.

1.2 Computational Artifacts
A; https://github.com/rst0git/SwapServeLLM

Artifact ID Contributions Related

Supported Paper Elements
A G =Gy Figure 5
Figure 6

2 Artifact Identification
2.1 Computational Artifact A,

Relation To Contributions

Supports all four contributions by implementing the SwapServeLLM
framework, which consists of the OpenAl-compatible API router,
model hot-swapping logic, concurrent inference request routing,
and GPU memory management. For the production of the results
in the paper, SwapServeLLM provides a set of configurations and
evaluation scripts. It also includes the raw CSV data of our evalua-
tion, scripts for analyzing the data, and plotting the results. These
artifacts are included in our repository and organized as follows:

e internal/, pkg/, vendor/: The core logic and helper func-
tions in private and public Go modules, as well as third-party
packages for reproducible build.

o evaluation/: Configurations and scripts for evaluation and
data analysis to reproduce the results in the paper.

Expected Results

The components, evaluation scripts, and conflagrations are used
in combination for the production of the results in the paper. The
evaluation scripts reproduce the swap-in latency improvements
and model loading benchmarks as shown in Figure 5 and Figure 6.

Expected Reproduction Time (in Minutes)

Artifact Setup: The expected computational time for deploying
the setup, installing all dependencies, and downloading all infer-
ence engines and LLM models is approximately 120-240 minutes,
depending on hardware availability and network bandwidth.

Artifact Execution: The expected computational time depends
mostly on the available hardware, model sizes, and number of times
each experiment is repeated to calculate mean values and standard
deviation. In our case, the total time considering all experiments is
approximately 240 minutes.

Artifact Analysis: The analysis process for this artifact is auto-
mated through a set of scripts that extract the evaluation data into
CSV format and plot the results. It takes approximately 10 minutes.

Artifact Setup (incl. Inputs)

Hardware. The configurations, scripts, and LLM models used in our
evaluation require NVIDIA GPUs with 80 GB of memory such as
A100 or H100.

Software. The following software must be installed:

Git: https://github.com/git-guides/install-git

runc: https://github.com/opencontainers/runc

Podman: https://podman.io/docs/installation

CRIU: https://criu.org/Installation

cuda-checkpoint: https://github.com/NVIDIA/cuda-checkpoint
CUDA: https://developer.nvidia.com/cuda-downloads
NVIDIA Driver: https://www.nvidia.com/en-gb/drivers/
NVIDIA Container Toolkit: https://docs.nvidia.com/datacenter/
cloud-native/container-toolkit

Go: https://go.dev/doc/install

e Python 3: https://www.python.org/downloads

Datasets / Inputs. The inputs used in our evaluation are included
as part of the artifact.

Installation and Deployment. Other than the software requirements,
it is necessary to clone our GitHub repository, download vLLM,
SGLang, TensorRT-LLM, and Ollama container images, install the
configuration files for SwapServeLLM.

Artifact Execution

This artifact’s workflow consists of two tasks T; and T, that do not
have dependency between them. T; may deploy the vLLM, SGLang,
TensorRT-LLM, and Ollama inference engines with Podman and
evaluate the cold-start latency of each engine running as a local
bare-metal container. T, may clone our GitHub repository, compile
our SwapServeLLM prototype and make sure it is working properly
with the available example.

Artifact Analysis (incl. Outputs)

The outputs of the experiments are log files containing the mea-
surements of cold-start, swap-in and swap-out latencies as well
as memory utilization. To process these outputs we use a set of
Python scripts that extract the measurements into files with CSV
format and plot the data to produce Figure 5 and Figure 6.

https://github.com/rst0git/SwapServeLLM
https://github.com/git-guides/install-git
https://github.com/opencontainers/runc
https://podman.io/docs/installation
https://criu.org/Installation
https://github.com/NVIDIA/cuda-checkpoint
https://developer.nvidia.com/cuda-downloads
https://www.nvidia.com/en-gb/drivers/
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit
https://go.dev/doc/install
https://www.python.org/downloads

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges with Inference Serving
	2.2 Efficient Model Loading for Inference
	2.3 On-Demand Model Loading
	3 Engine-Agnostic Model Swapping
	3.1 System Overview
	3.2 SwapServeLLM Initialization
	3.3 Model Hot-Swapping Workflow
	3.4 Model Swapping Mechanism
	3.5 Preemption Policy

	4 Implementation
	4.1 API Router and Request Handler
	4.2 On-demand Model Hot-Swapping

	5 Evaluation and Analysis
	5.1 Experiment Setup
	5.2 Impact of Cold-Starts on Inference Latency
	5.3 Hot-Swapping Latency of SwapServeLLM

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	1 Overview of Contributions and Artifacts
	1.1 Paper's Main Contributions
	1.2 Computational Artifacts

	2 Artifact Identification
	2.1 Computational Artifact A1

