
Efficient Live Migration of Linux
Containers

Radostin Stoyanov and Martin J. Kollingbaum(B)

University of Aberdeen, Aberdeen, UK
r.stoyanov.14@aberdeen.ac.uk, m.j.kollingbaum@abdn.ac.uk

Abstract. In recent years, operating system level virtualization has
grown in popularity due to its capability to isolate multiple userspace
environments and to allow for their co-existence within a single OS kernel
instance. Checkpoint-restore in Userspace (CRIU) is a tool that allows
to live migrate a hierarchy of processes – a container – between two phys-
ical computers. However, the live migration may cause significant delays
when the applications running inside a container modify large amounts
of memory faster than a container can be transferred over the network to
a remote host. In this paper, we propose a novel approach for live migra-
tion of containers to address this issue by utilizing a recently published
CRIU feature, the so-called “image cache/proxy”. This feature allows for
better total migration time and down time of the container applications
that are migrated by avoiding the use of secondary storage.

Keywords: Linux containers · CRIU · Live migration
Cloud computing

1 Introduction

Live migration of containers is the act of detaching a set of processes that run
in the context of a container, transfer them to a remote host, and reattach
them back to the new OS kernel. Checkpoint-restore in Userspace (CRIU) [4]
is a tool that allows such live migration of a hierarchy of processes (container)
between two physical computers. Live migration techniques are used for mov-
ing a container instance from one physical host to another, while preserving the
running state of the containerized applications and maintain open network con-
nections. Live migration across distinct physical hosts has several benefits, such
as dynamic load balancing, fault tolerance, data access locality, and it makes
low-level system maintenance easy by allowing a clean separation between hard-
ware and software. Migration can be used to improve power efficiency by gath-
ering containers together on a physical machine, and to enable the suspension
of currently-unused hardware resources.

During migration, several resources are transferred over the network – CPU
state, memory state, network state and disk state. The transfer of the disk state
can be circumvented by having a shared storage (SAN, NAS, NFS, etc.) between
c© Springer Nature Switzerland AG 2018
R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 184–193, 2018.
https://doi.org/10.1007/978-3-030-02465-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-02465-9_13

Efficient Live Migration of Linux Containers 185

hosts participating in the live migration process. The size of the memory state
depends on the type of applications that are being migrated. For example, an
HTTP server such as Nginx1 might use only a few hundreds megabytes of mem-
ory, whereas an in-memory data store such as Redis2 might be associated with
several gigabytes of data. The transfer of the whole memory state during migra-
tion can take too long to be a practical solution [14]. This problem is specifically
hard when containerized applications modify large amounts of memory faster
than a container can be transferred over the network.

The technique used to send the memory state to a remote host is, therefore,
a major concern in live migration algorithms.

Improving the performance of live migration algorithms mainly focuses on
reducing the total migration time and down time. The total migration time is
the time between the start and the end of the migration process. Down time is
the time when the migrated application is not running neither on the source nor
on the destination server. Live migration algorithms aim to minimize the down
time period, during which the application service is totally unavailable, while
keeping the total migration time as small as possible.

Many live migration algorithms have been proposed over the years [18]. In
terms of the way they transfer the memory state, these algorithms are classified
into three categories:

1. Pre-copy migration starts by copying the memory state to the destination
host. While copying, the source host remains responsive and keeps progress-
ing all running applications. As memory pages may get updated on the source
system, even after they have been copied to the destination system, the app-
roach employs mechanisms to monitor page updates.

2. Post-copy first suspends the migrated application at the source host, copies
a minimal processor state to the destination host, where the migrated appli-
cation is resumed, and begins fetching memory pages over the network from
the source.

3. Hybrid-copy works by combining both pre and post copy algorithms. It
first starts pre-copy migration of the application, which keeps running on
the source host, while all the memory pages are copied to the destination
host. The application is then suspended and its processor state is copied over,
without the remaining memory pages. Then, the application is resumed at the
destination immediately, and the post-copy algorithm is used to synchronize
the rest of the memory pages.

Two main implementations of container migration, Docker [6] and LXD [7]
currently only use pre-copy migration. There are no container runtime systems
that currently use image-cache/image-proxy for migration. In this paper, we
report on our migration implementation that uses Image Cache and Image Proxy
for container migration, which are two options in development in the CRIU
(Checkpoint Restore In Userspace) tool. We show that live migration of Linux
1 https://www.nginx.com/.
2 https://redis.io/.

https://www.nginx.com/
https://redis.io/

186 R. Stoyanov and M. J. Kollingbaum

containers based on the image-cache and image-proxy components of CRIU,
currently available in its development branch, provides better performance and
time savings in migrating containers. The pre-copy migration algorithm has
been implemented by performing one or more pre-dump iterations with CRIU
Sect. 2.1. This approach allows the automation of the transfer of image files and
reduces the total migration time and down time by keeping all memory pages in
a cache buffer rather than storing them on disk. The results of our evaluation
show that the performance of pre-copy migration with CRIU depends on the
memory intensity of applications, and the total migration time and down time
increase proportionally to the amount memory used by the migrating process.

In Sect. 2, we describe in detail the particular features of checkpoint/restore
mechanisms relevant to our work. In Sect. 3, we point out how we improve live
migration. In Sect. 4, we provide a performance analysis of process live migration.
In Sect. 5, we discuss future work and conclude the paper with Sect. 6.

2 Live Migration with CRIU

With the increased interest in Linux container technology, the checkpoint/re-
store mechanism has attracted more attention. This mechanism can be used for
fault tolerance or dynamic load balancing by migrating a running process from
one system to another. Live migrating a process is nothing more than check-
pointing a process, transferring it to a destination system, and restoring the
process back to its original running state. The checkpoint/restore mechanism
can be applied to a hierarchy of processes, thus it is a perfect base technol-
ogy for container migration. Early implementations of checkpoint/restore were
implemented as an in-kernel approach [10,16]. As pointed out in [3], these imple-
mentations did not focus on upstream inclusion in the Linux kernel. As a result,
there was no agreement in the Linux kernel community on the design of a check-
point/restore mechanism, which led to the adoption of solutions that were not
officially accepted by the Linux community [3]. The CRIU project solves this
problem by implementing checkpoint/restore in user space, using available ker-
nel interfaces. As pointed out in [3], one of the most important kernel interfaces
for checkpointing is the ptrace (see ptrace manual pages) system call. It pro-
vides means for a process to control the execution, and examine and change the
memory allocated to another process and its registers. Another important kernel
feature, last pid control, that is used to implement the restore functionality of
CRIU allows the restored process to receive the same process identifier (PID) it
had during checkpointing. In order to achieve this, CRIU writes one number less
of the desired PID to /proc/sys/kernel/ns last pid. Then, it verifies that
the newly created process has the correct PID, otherwise the restoration of this
process is aborted.

2.1 Pre-copy Migration with CRIU

Iterative pre-copy live migration is one of the most reliable live migration algo-
rithms. By “iterative” we mean that pre-copying occurs in rounds, during which

Efficient Live Migration of Linux Containers 187

the memory pages to be transferred in round n are those that are modified
after round n - 1 (all pages are transferred in the first round). The pre-copy
support in CRIU is implemented as an incremental pre-dump [1] by using the
concept of “soft-dirty bit” on a Page Table Entry (PTE) [13]. The soft-dirty
bit feature is implemented in the Linux kernel to enable tracking of memory
changes [12]. CRIU starts the tracking of memory by writing the integer 4 to
/proc/$PID/clear refs. This operation instructs the kernel to clear the soft-
dirty and the writable bits from all PTEs of the specified process. After this,
every first write operation on a memory page associated with this process will
set the soft-dirty flag. Modified PTEs are identified in a subsequent pre-copy
iteration by reading /proc/$PID/pagemap, where $PID is a process identifier of
the migrated process. The modified PTEs are those that have a soft-dirty (the
55’th) bit reported. CRIU enables pre-copy iterations with the pre-dump action.
This allows CRIU to extract only part of the information (i.e. the memory pages)
associated with a container.

2.2 Post-copy Migration with CRIU

Post-copy minimizes the application down time during live migration. In con-
trast to pre-copy, this algorithm transfers all memory pages until after the CPU
state has already been moved and resumed on the destination host. Concur-
rently, when the migrated application accesses a missing memory page, CRIU
handles this page fault by transferring the required page from the source node
and injects it into the running task memory address space. This demand pag-
ing approach ensures that each memory page is sent over the network at most
once. However, the network delay might cause a performance degradation of
the migrated process, as well introduce additional, high-priority network traf-
fic. Residual dependencies are being removed from the source host as quickly as
possible by pro-actively pushing the remaining memory pages to the destination.

The post-copy algorithm is implemented in CRIU by utilizing a recently
added user-space page fault feature in the Linux kernel – userfaultfd [2]. The
post-copy migration can be started by providing a --lazy-pages flag to the
dump action, as well as during restore to skip the injection of memory pages
into the processes address space and register lazy memory areas with userfaultfd
[2]. This option instructs CRIU to not extract memory pages during checkpoint,
and to allow the lazy-pages daemon to request them via TCP connection. Mem-
ory page fault notifications are handled by a lazy-pages daemon that receives a
userfault file descriptor from the restore process via UNIX socket.

2.3 Automatic Transfer of Image Files

Recently, CRIU has been extended with a new feature that automates the trans-
fer of image files [8]. This feature enables live migration of Java applications
from one Java runtime environment (the so-called “Java Virtual Machine”) to
another without performing expensive I/O operations. This extension introduces
the“image-cache” and “image-proxy” actions for CRIU, as well as the --remote

188 R. Stoyanov and M. J. Kollingbaum

option for dump and restore. The automatic transfer of image files enables sim-
plified implementation for live migration of containers.

Two main implementations of container migration, Docker [] and LXD []
currently only use pre-copy migration. There are no container runtime systems
that would use image-cache/image-proxy for migration. In this paper, we report
on a migration implementation that uses Image Cache and Image Proxy for
container migration, using image cache and image proxy for live migrating con-
tainers. The pre-copy migration algorithm has been implemented by performing
one or more pre-dump iterations with CRIU Sect. 2.1. The pre-dump CRIU
feature allows to extract relevant memory pages of a hierarchy of processes (con-
tainer) that is being migrated. The pre-dump CRIU feature is described in the
Patent Specification US9621643B1 [11] and is implemented by injecting a par-
asite code, which is used to execute CRIU service routines inside the address
space of the migrated process. The parasite code is a binary blob of code built
in PIC (position-independent code) format for execution inside another process
address space. PIC is a body of machine code that, being placed somewhere in
the primary memory, executes properly regardless of its absolute address.

There are two modes the parasite can operate in - trap mode and daemon
mode. In trap mode, the parasite executes one command at a time. Right after
a call is executed, a trapping instruction is placed to trigger a notification to
the caller and indicate that the parasite has finished. When the parasite runs
in daemon mode, it opens a command socket that is used to communicate with
the caller. Once the socket is opened, the daemon will wait for commands in
sleep mode. When everything is done, the parasite code is being removed, and
the migrated process is left back into the state it was before the injection.

2.4 Design of Post-copy Memory Migration

The current Post-copy implementation in CRIU begins with a “normal” check-
point (criu dump) with provided --lazy-pages option. By using this option,
the process memory is collected into pipes and non-lazy pages are stored into
image files or transferred over to the destination host via page-server. The lazy
pages are kept in pipes for later transfer. After the checkpoint is completed (at
the dump finish stage), a TCP server is started to handle page requests from the
restore host. In other words, the lazy memory pages are transferred on-demand
via TCP connection rather than being stored into image files. At the destination
side, a lazy-pages daemon has to be started to create two sockets – a UNIX
socket that is used to receive page-faults from the restore; and a TCP socket to
forward page requests to the source host. The checkpoint image files are used
by the restore action to create memory mappings, registers memory areas with
userfaultfd and fill the VMAs that cannot be handled by the userfaultfd mecha-
nism. All lazy memory pages are handled by a dedicated daemon. On page-fault,
the restore action sends the userfaultfd to the lazy-pages daemon, which sends
a command to the source host. The source side extracts the requested memory
pages from the pipe and send them over via the TCP socket, and the lazy-pages
daemon copies the received pages into the restored process address space. The

Efficient Live Migration of Linux Containers 189

lazy-pages daemon knows which pages exist on destination host, and therefore
it can identify when all pages have been migrated. CRIU implements the active
pushing mechanism [15] for post-copy migration by copying the remaining mem-
ory pages of the migrated process in the background while no network page
faults are being requested [2].

2.5 Combining Pre-copy and Post-copy Migration

Both Pre-copy and Post-copy migration algorithms have advantages and disad-
vantages. Application down time can be significantly decreased by pre-copying
relevant memory pages from the address space of the migrating process hier-
archy before the final freeze. However, in the case of write-memory-intensive
applications, such pre-copy iterations have negative effects and increase the total
migration time without improving the application down time. A solution to this
problem is provided with post-copy migration. The post-copy algorithm transfers
only the minimal application state that is required during down time in order to
resume execution on the destination host. This approach greatly improves the
application down time and ensures that each memory page is transmitted over
the network at most once. However, this approach has two major drawbacks.
First, the performance of the application during migration time is affected sig-
nificantly due to the network latency that slows down memory access. Second,
the reliability of this migration algorithm is reduced due to the impossibility to
recover the running state of the application on neither the source or the desti-
nation host in case of network problems.

Fortunately, both pre- and post-copy algorithms can be used together with
CRIU [19]. This approach is also known as hybrid-copy. The benefits of this
combination are the following:

1. Application downtime is minimized by transferring memory pages that are
being frequently modified on-demand.

2. Performance degradation of the application, after it has been moved over to
the destination host, is minimized by providing as much memory pages as
possible on the destination side prior the start of the post-copy phase. For
example, read-only areas of the application’s memory address space are being
transfered over prior the post-copy phase.

3. Reliability is significantly improved, in comparison with Post-copy, by reduc-
ing the number of pages that are being transfered on-demand.

3 Using Image Cache and Image Proxy for Container
Live Migration

Originally, CRIU was designed to store the running state of a checkpointed
process as a collection of image files to persistent storage. In a live migration
scenario, this approach has two major disadvantages. First, all image files are
written to persistent storage twice – once when dumping the container on the

190 R. Stoyanov and M. J. Kollingbaum

source host, and once when receiving the images on the destination host. Second,
these image files are read from disk twice – once when sending the images to des-
tination host, and once when performing the restore operation. A simple solution
of this issue is outlined in the CRIU documentation [5] as disk-less migration,
which stores image files on a temporary file system instead of persistent storage.

A better solution has been proposed by introducing two new components to
CRIU – image-cache and image-proxy [8]. These components allow a decoupling
of the saving/reading of image files from dumping/restoring a process tree. The
communication between these two components is achieved over a TCP socket and
the running state of the checkpointed/restored process is transferred via Unix
sockets from the CRIU process. This approach decreases the total migration
time and down time for live container migration by keeping image files in cache
rather than on persistent storage. Another major advantage of this approach
is the automated transfer of image files, which allows a simplification of the
implementation of live migration with CRIU.

4 Evaluation

Qualitative evaluation between pre- and post-copy migration algorithms would
give some indication of their potential value for migrating memory-intensive
applications. The image-cache/proxy implementation is compared with total-
copy, which transfers (using rsync) the entire process state before the process
execution resumed on the destination machine.

All evaluation tests were performed by live migrating the memhog process
between two VMs with pre-installed Fedora 27 Cloud Edition and CRIU com-
piled from the criu-dev git branch – commit 8340e64137e. Both VMs have an
identical hardware configuration – 4 vCPUs (Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.20 GHz), 30 MB cache size, and 8 GB RAM.

The results show that the performance of pre-copy migration with CRIU
depends on the memory intensity of applications, and the total migration time
and down time increase proportionally to the amount memory used by memhog.
The total migration time and down time for the post-copy migration do not
increase significantly with the increase of memory used by memhog.

The image-cache/proxy mechanism does not have significant improvement in
terms of decreased total migration time. In contrast, when compared with the
total-copy using rsync, the image-cache/proxy technique shows higher migra-
tion time, which increases proportionally with the amount of memory used by
memhog.

5 Discussion and Future Work

Several techniques, borrowed from live migration of virtual machines, are appli-
cable for Linux containers. These techniques can be used to extend CRIU to
further optimize the pre- and post-copy migration (Fig. 1).

Efficient Live Migration of Linux Containers 191

Fig. 1. Comparison of the live migration algorithms for the memory intensive applica-
tion (memhog) used with different size of allocated memory.

In identifying the Writable Working Set, each process will have some (hope-
fully small) set of memory of pages that it updates very frequently and which
are therefore poor candidates for pre-copy migration. This concept of writable
working set (WWS) was first introduced in [9]. Based on the analysis of the
behavior of server workloads (the WWS), the number of pre-copy iterations can
further improve the efficiency of the migration. The writable working set can be
identified by reading /proc/$PID/pagemap between pre-copy iterations and keep
track of the modified memory pages since the last iteration that have not been
send over to the new host yet. A similar idea was demonstrated with a Markov
model applied to forecast the memory access pattern to adjust the memory page
transfer order and reduce the number of unnecessary transfers [17].

A crucial concern for live migration is the impact on active services. Resource
usage control during live migration may provide performance enhancements. For
instance, iteratively extracting and sending memory pages between two hosts in
a cluster can easily consume the entire bandwidth available between them and
hence starve the active services of resources. This issue needs to be addressed by
carefully controlling the network and CPU resources used by CRIU during the
migration process, thereby ensuring that it does not interfere excessively with
active traffic or processing.

Another improvement may be achieved through Delta Compression Based
Memory Transfer. In order to live migrate a virtual environment (container), all
memory pages need to be transferred across the network to the destination host.
However, a typical memory page occupies 4 KB, a standard Ethernet network
packet can only transport 1 KB (including header). Therefore to transfer a unique

192 R. Stoyanov and M. J. Kollingbaum

memory page, we need to send a minimum of 5 packet over the networks. When
the memory pages are frequently updated, and the changes must be propagated
over some transport medium it is undesirable to transmit the full new page due
to its size. An effective solution to this I/O bottleneck is a delta compression
algorithm for live migration of KVM virtual machines [14]. By using a simple
and fast compression algorithm such as XORed Binary Run Length Encoding
(XBRLE) [14] on the original and updated memory pages, and transmit only
the delta file, the amount of down time can be reduced drastically, making live
migration a suitable for large business applications.

The characteristics of this algorithm of being very small (a few hundred
lines of code) and fast, allow the maintenance of both memory pages and the
executable code in CPU cache. However, the compression ratio performance is
limited since information entropy plays a role as a measure on how well data can
be compressed.

6 Conclusion

In this paper, we discuss an implementation of the use of Image Cache and
Image Proxy for container migration (CRIU). Originally, CRIU was designed to
store the running state of a checkpointed process as a collection of image files
to persistent storage. In a live migration scenario, this approach has major dis-
advantages as image files have to be stored and retrieved multiple times from
persistent storage. In this paper, we presented the implementation of a disk-less
migration, which stores image files on a temporary file system instead of per-
sistent storage, using two new components to CRIU – image-cache and image-
proxy. The results show that the performance of pre-copy migration with CRIU
depends on the memory intensity of applications, and the total migration time
and down time increase proportionally to the amount memory of the migrat-
ing process. More work is needed to improve the migration performance of our
implementation of an image-cache/proxy mechanism. Although it should per-
form better then a total-copy migration, the evaluation results show that our
implementation is not yet optimized. The pre- and post-copy algorithms were
compared by migrating a memory intensive process – memhog. The results show
that post-copy performs better for this type of application.

References

1. Memory changes tracking - CRIU documentation. https://criu.org/Memory
changes tracking

2. Userfaultfd - CRIU documentation. https://criu.org/Userfaultfd
3. CRIU - Checkpoint/Restore in User Space, October 2016. https://access.redhat.

com/articles
4. CRIU (2018). https://criu.org/
5. CRIU disk-less migration (2018). https://criu.org/Disk-less migration
6. Docker, July 2018. https://docs.docker.com/engine/reference/commandline/

checkpoint/

https://criu.org/Memory_changes_tracking
https://criu.org/Memory_changes_tracking
https://criu.org/Userfaultfd
https://access.redhat.com/articles
https://access.redhat.com/articles
https://criu.org/
https://criu.org/Disk-less_migration
https://docs.docker.com/engine/reference/commandline/checkpoint/
https://docs.docker.com/engine/reference/commandline/checkpoint/

Efficient Live Migration of Linux Containers 193

7. Lxd, July 2018. https://github.com/lxc/lxd
8. Bruno, R., Ferreira, P.: ALMA: GC-assisted JVM live migration for java server

applications. In: Proceedings of the 17th International Middleware Conference, p.
5. ACM (2016)

9. Clark, C., et al.: Live migration of virtual machines. In: Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation-Volume
2, pp. 273–286. USENIX Association (2005)

10. Documentation, O.: Checkpointing and live migration (2018). https://wiki.openvz.
org/Checkpointing and live migration

11. Emelyanov, P.: System and method for joining containers running on multiple
nodes of a cluster. https://patents.google.com/patent/US9621643

12. Emelyanov, P.: Ability to monitor task memory changes, April 2013. https://lwn.
net/Articles/546966/

13. Emelyanov, P.: Soft-Dirty PTEs - Linux Kernel Documentation, April 2013.
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt

14. Hacking, S., Hudzia, B.: Improving the live migration process of large enterprise
applications. In: Proceedings of the 3rd International Workshop on Virtualization
Technologies in Distributed Computing, pp. 51–58. ACM (2009)

15. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual
machines. ACM SIGOPS Oper. Syst. Rev. 43(3), 14–26 (2009)

16. Laadan, O., Nieh, J.: Transparent checkpoint-restart of multiple processes on
commodity operating systems. In: 2007 USENIX Annual Technical Conference
on Proceedings of the USENIX Annual Technical Conference, ATC 2007, pp.
25:1–25:14. USENIX Association, Berkeley (2007). http://dl.acm.org/citation.
cfm?id=1364385.1364410

17. Lei, Z., Sun, E., Chen, S., Wu, J., Shen, W.: A novel hybrid-copy algorithm for
live migration of virtual machine. Future Internet 9(3), 37 (2017)

18. Milojičić, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migra-
tion. ACM Comput. Surv. (CSUR) 32(3), 241–299 (2000)

19. Reber, A.: Combining pre-copy and post-copy migration, October 2016.
https://lisas.de/∼adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-
migration.html

https://github.com/lxc/lxd
https://wiki.openvz.org/Checkpointing_and_live_migration
https://wiki.openvz.org/Checkpointing_and_live_migration
https://patents.google.com/patent/US9621643
https://lwn.net/Articles/546966/
https://lwn.net/Articles/546966/
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
http://dl.acm.org/citation.cfm?id=1364385.1364410
http://dl.acm.org/citation.cfm?id=1364385.1364410
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html
https://lisas.de/~adrian/posts/2016-Oct-14-combining-pre-copy-and-post-copy-migration.html

	Efficient Live Migration of Linux Containers
	1 Introduction
	2 Live Migration with CRIU
	2.1 Pre-copy Migration with CRIU
	2.2 Post-copy Migration with CRIU
	2.3 Automatic Transfer of Image Files
	2.4 Design of Post-copy Memory Migration
	2.5 Combining Pre-copy and Post-copy Migration

	3 Using Image Cache and Image Proxy for Container Live Migration
	4 Evaluation
	5 Discussion and Future Work
	6 Conclusion
	References

