
Kubernetes Scheduling with Checkpoint/Restore:
Challenges and Open Problems

Viktória Spišaková1,2, Radostin Stoyanov3,4, Lukáš Hejtmánek2,
Dalibor Klusáček5, Adrian Reber4, and Rodrigo Bruno6

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
spisakova@ics.muni.cz

2 Institute of Computer Science, Masaryk University, Brno, Czech Republic
3 University of Oxford, United Kingdom

4 Red Hat
5 CESNET, Prague, Czech Republic

6 INESC-ID, Instituto Superior Técnico, University of Lisbon, Portugal

Abstract. Efficient resource management and scheduling have been per-
sistent challenges since the early days of computing and remain crucial
today. The widespread adoption of containers managed by orchestra-
tors like Kubernetes has introduced new dimensions to these challenges.
Despite their lightweight nature, containers still suffer from inefficiencies
due to over-provisioning and long-running workloads allocating resources
potentially forever. Existing scheduling techniques are not enough to
meet these demands, and there is a growing need for orchestration and
scheduling policies that support advanced preemption, migration, and
fault tolerance. Well-established container Checkpoint/Restore (C/R)
mechanisms, implemented through tools like CRIU, offer a promising so-
lution for improving resource scheduling efficiency. However, these mech-
anisms remain only partially integrated with Kubernetes. In this paper,
we propose a novel Interruption-Aware Scheduling Strategy that incor-
porates transparent C/R with the Kubernetes scheduler. We discuss the
current C/R mechanisms, outline the key design choices involved in inte-
grating with the Kubernetes scheduler, and explore associated challenges
and open problems. We further discuss potential solutions to these chal-
lenges, offering a path toward more efficient resource management to
better meet the needs of today’s computational landscape.

Keywords: Checkpoint and Restore · Kubernetes · Containers · Resource
Management · Scheduling

1 Introduction

Achieving efficient resource management presents a fundamental challenge in
large-scale systems, from high-performance computing (HPC) clusters to cloud
computing platforms. The performance of such systems is driven predominantly
by two key factors: scheduling strategy and workload characteristics.



2 V. Spišaková et al.

While HPC environments focus on optimizing batch processing for special-
ized engineering and scientific workloads [37], modern cloud-based systems are
designed to support a broad range of services [28]. Despite these differences, both
domains share a common challenge: How to achieve optimal resource utilization
while maintaining fault tolerance and responsiveness in rapidly changing envi-
ronments? The emergence of container orchestration platforms like Kubernetes
has transformed cloud computing by enabling the automated deployment, scal-
ing, and management of containerized workloads at scale. However, the nature
of these workloads has also become more dynamic and resource-intensive, and as
a result, existing scheduling techniques fall short of fully leveraging the elastic
capabilities of modern cloud infrastructures [36,12,55]. Therefore, there is a clear
need for new, adaptive scheduling techniques and tools to support demands for
scalability, performance, and fault tolerance at the same time.

HPC employs a classical scheduling model where workloads are submitted as
jobs to a centralized queueing system (ordered by priority). A centralized sched-
uler effectively manages both job placement and resource allocations, which the
job then uses throughout its entire run time. After termination, allocated re-
sources are immediately freed and can be reused, which enables high efficiency
in HPC environments. For instance, Figure 1 demonstrates the efficiency of a
batch scheduling strategy within the Czech national e-INFRA CZ [9] distributed
infrastructure, which is based on Open PBS. This figure illustrates the ratio be-
tween the requested and actually used CPU years of the top 15 users’ workloads
over one year. For the majority of users, this ratio is more than ∼80%, indicat-
ing that most of the requested resources are consumed and are kept busy with
high per-user utilization that translates to high cluster utilization. Idle time is
minimized as a result of well-managed job life cycles and workload types that
are generally better aligned with the requested resources.

Kubernetes is the most widely adopted orchestration framework for con-
tainerized environments. However, its default scheduling strategy and the char-
acteristics of typical workloads differ significantly from those of traditional HPC
systems. Workloads define resource requests and limits that are independent of
the workload’s lifetime, which can span from a few seconds to several months,
or even continue effectively “forever”. Every workload is scheduled upon creation
by the Kubernetes scheduler, which plans according to the requested resources,
but the workload may utilize resources up to its defined limits.

This scheduling strategy allows for flexibility and rapid startup times. How-
ever, resources are not reclaimed immediately when demand drops, resulting
in resource fragmentation and diminished efficiency across many clusters. This
is a fundamental difference between Kubernetes and HPC environments where
resources are dedicated for long periods of time and not fully reclaimed. This
difference also explains why Kubernetes clusters, particularly at large-scale, fail
to achieve high resource utilization when compared to traditional batch systems.

In Figure 2, we illustrate this problem by showing the ratio of requested
CPUs to actual CPU usage for the e-INFRA CZ Kubernetes cluster nodes.
This utilization data demonstrates how actual usage ratio can drop in cloud



Checkpoint and Restore in Kubernetes 3

Fig. 1. A comparison between requested CPU time (blue bars) and actually consumed
CPU time (orange bars). Percentage above each pair of bars represents the ratio be-
tween requested and real for the top 15 users of e-INFRA CZ HPC environment.

environments. The ratio of real node CPU utilization to total requested CPUs
ranges from approximately ∼0.78 to 129%. Removing an outlier where utilization
exceeds requests reduces the range to approximately ∼0.78 to 85%, with the
average CPU utilization as a percentage of requests around ∼21%. The average
real CPU utilization compared to the number of physical CPUs per node is
approximately ∼6%.

This gap between requested resources and real usage demonstrates the fun-
damental problem we aim to address. Computing nodes often appear fully uti-
lized because users overestimate resource needs (e.g., setting CPU and memory
significantly higher than what workloads actually consume), while actual utiliza-
tion remains low. As a result, clusters appear saturated but remain mostly idle,
preventing new workloads from being scheduled and leading to unnecessary en-
ergy consumption and increased operational costs. In cloud environments, this
inefficient resource utilization is primarily driven by over-provisioning and, to
some extent, by the lack of resource elasticity [2]. While both HPC and cloud
systems suffer from over-requesting, batch systems mitigate this by releasing re-
sources once time-constrained jobs complete. In contrast, Kubernetes may leave
resources reserved indefinitely for long-running services with excessive requests,
even when those services are idle (see Figure 3).

Our previous research [41] explored scavenger jobs — low-priority workloads
designed to be easily terminated — to improve resource utilization by dynami-
cally reclaiming idle resources. However, this approach has a crucial limitation:
when a scavenger job is preempted, all of its computational progress is lost, wast-
ing the energy and CPU time already consumed. This inefficiency highlights the



4 V. Spišaková et al.

a1
0

a1
1

a1
2

a1
3

a1
4

a1
5

a1
6

a1
7

a1
8

a1
9

a2
0

a2
2

a2
3

a2
4 a5 a6 a7 a8 a9 b1 b1
0

b1
1

b1
2

b1
3

b1
4

b1
5

b1
6

b1
7 b2 b3 b4 b5 b6 b7 b8 b9 c1
0 c3 c4 c5 c6 c7 c8 c9

0

20

40

60

80

100

Nu
m

be
r o

f C
PU

s R
eq

ue
st

ed
 v

s R
ea

l U
sa

ge

64

96#CPUs Allocatable
#CPUs Requested
#CPUs Real Usage

Fig. 2. A comparison of requested CPU resources (blue bars) and actual usage (orange
bars) for individual nodes in the e-INFRA CZ Kubernetes cluster, with a red line
indicating the number of physical CPUs per node.

need for a more advanced strategy. The challenge, therefore, is to develop a
mechanism that can dynamically reallocate resources from running workloads
without the penalty of discarding completed work, thereby improving overall
efficiency and elasticity in cloud environments.

In this paper, we explore a novel approach of integrating transparent Check-
point/Restore mechanisms as a core scheduling primitive within the Kubernetes
container orchestration system. While C/R is an established concept that has
been successfully leveraged for purposes such as virtual machine migration in tra-
ditional clouds, fault tolerance in HPC, or accelerating cold-starts in serverless or
edge environments, our work pioneers its integration with Kubernetes schedul-
ing. This initiative is particularly significant in current computational landscape
as Kubernetes is the leading solution for container orchestration, while CRIU
stands as the foremost solution for transparent container C/R. By combining
both technologies, our research contributes to the field by providing a more ef-
ficient and flexible container orchestration solution that addresses the need for
cloud elasticity and adaptability in diverse computing environments.

The rest of the paper is organized as follows: Section 2 introduces the problem
statement that stems from the necessity of cloud elasticity combined with the di-
versity of cloud workload types and imperfect scheduling. In Section 3 we expand
more on the reasons why we advocate for C/R as a new scheduling primitive and
discuss these mechanisms. The integration of C/R into the scheduling strategy
is described in Section 4, which delves deeper into the design and architecture
of the proposed interruption-aware scheduling strategy. Section 5 explores the
open problem of robust C/R integration within Kubernetes ecosystem, providing
an overview of the architectural challenges, networking, security considerations,



Checkpoint and Restore in Kubernetes 5

re
so
u
rc
es

time

(a) Limited workload duration in HPC.

re
so
u
rc
es

time

(b) Unlimited workload duration in Ku-
bernetes.

Fig. 3. Visualization of workload lifetime characteristics in different computing envi-
ronments. (a) HPC systems schedule jobs which have a defined start and end time. (b)
Cloud-native platforms like Kubernetes manage a mix of workloads, including services
designed to run indefinitely (represented by fading bars).

cost awareness and C/R user transparency. We conclude the paper and discuss
future work in Section 7.

2 The Need for Lossless Workload Preemption

Kubernetes clusters and cloud platforms in general run multi-class workloads all
at once — from interactive applications and long-running batch jobs to short,
bursty tasks as well as (micro)services that can run essentially forever. Interactive
applications may require substantial resources intermittently but not continu-
ously. Serverless workloads demand instant scaling capabilities. Some workload
types also have placement limitations — for example, display-forwarding applica-
tions rely on specific GPU types that support video encoding. The bursty nature
of HPC workloads requires sufficient resource slack and proper fault-tolerance.

Each workload type brings its own set of requirements, especially concerning
performance and responsiveness. To support these requirements, cloud environ-
ments need elasticity — the ability to scale up or down so that the workload is
allocated the capacity it needs when it needs it. Existing Kubernetes features
for elasticity include autoscaling and evictions. However, these are not enough.
Workloads are not equally elastic, as not all workload types can be automati-
cally scaled with a positive effect, e.g., scaling an HPC-style workload by one
more instance will only perform the same computation twice, effectively wast-
ing more resources. Evicting (preempting) workloads is also limited to stateless
workloads, since the preemption of stateful workloads would lead to losing all
their progress, which is the opposite of efficient scalability.

In this context, it is particularly important to realize that HPC workloads,
which are both stateful and hardly scalable by default, are no longer deployed
only in batch environments. The situation has undoubtedly changed as HPC
workloads are already being executed on the cloud and in containers, especially
in the field of life sciences [4]. Thus, as the adoption of container technologies
continues to grow, more and more HPC workloads are inevitably being turned



6 V. Spišaková et al.

into containers managed by orchestrators like Kubernetes. This trend is further
emphasized in the outcomes of Liu’s work [21]:

“Our achievements demonstrated that containerization technologies
can support the convergence of HPC and ML applications, not only keep-
ing the well-known advantages of containerization regarding customiza-
tion, portability, reproducibility, and fault isolation but providing also
performance benefits thanks to fine-grain deployments and resource allo-
cation.”

Consequently, there is a need for a more comprehensive approach that can
effectively manage dynamic and heterogeneous workloads without compromising
efficiency and scalability, and provide a lossless preemption mechanism. For that,
we propose a new scheduling method — Interruption-Aware Scheduling Strategy
(IASS) that combines transparent checkpoint/restore mechanisms with advanced
workload placement and preemption policies.

3 Checkpoint/Restore as a New Scheduling Primitive

Checkpoint/Restore is a mechanism for capturing the execution state of an ap-
plication at an arbitrary point in time (checkpoint), allowing it to be restored to
that state later (restore), potentially on a different machine. Transparent C/R
refers to a system-level approach that can be used without changing the appli-
cation’s source code or altering the flow of operations within the application.

By introducing C/R capabilities into the scheduler, it could be possible to
checkpoint all workloads (thus saving progress) and reschedule them with an
optimized schedule, with the definition of optimized varying depending on the
environment or the application e.g., improving data locality for I/O-intensive
workloads, workload consolidation to free up hardware resources for scaling down
or maintenance, or catering to a custom priority system.

In practice, achieving a transparent checkpointing mechanism for all ap-
plication types is not only difficult — it is also infeasible to checkpoint every
workload. However, explicit C/R support for a set of workloads (e.g., machine
learning training jobs, HPC simulations) has potential in multiple areas (e.g.,
fault-tolerance, auto-scaling, dynamic load-balancing) to improving resource uti-
lization through a set of new or modified scheduler characteristics and abilities:

(i) Backfilling: In this context, backfilling means opportunistic capacity us-
age where low priority workloads are scheduled onto the free resources with
no guarantee of resource availability. When resources are required by higher-
priority workloads, these opportunistic workloads are immediately preempted
(checkpointed). This strategy aims to maximize resource utilization by filling
in the gaps that would otherwise remain idle.

(ii) Lossless preemption: Higher-priority or urgent workloads can be sched-
uled without losing the computational progress of preempted ones, enabled



Checkpoint and Restore in Kubernetes 7

by checkpoint-based rather than termination-based preemption. This ap-
proach allows to effectively generalize preemptibility across workloads, irre-
spective of their priority level or execution semantics.

(iii) Dynamic workload migration: Workload migration refers to the process
of transferring a running workload from one node to another while preserving
the runtime state of all processes within it. The transfer might be necessary
due to fragmentation of available cluster resources, node maintenance or
node CPU or memory pressure. The C/R mechanism minimizes disruption
of workloads during the workload reallocation.

(iv) Infrastructure-level fault tolerance: Periodic checkpointing can be used
to protect long-running and stateful workloads from unexpected hardware
or node failures. In the case of such an event, the scheduler restarts the
workload from the most recent checkpoint instead of resuming from scratch.
This mechanism allows to begin execution close to the point of node failure
and potentially preserve hours or days of computation.

Incorporating C/R capabilities into the scheduling system enables flexible
workload management and advanced optimizations that are completely trans-
parent to workloads and users. From the user’s perspective, they can be offered
another quality-of-service tier at a lower price and without wait times for re-
sources, but the task might be interrupted during execution. It might be very
profitable for users to adopt C/R computing, especially if the task is of a long-
running, delay-insensitive nature.

An example of such dynamics are Amazon spot instances, which offer similar
opportunistic resource usage without providing reservation guarantees. These
instances (and their workloads) can be terminated at any time, typically to
accommodate higher-tier reserved instances. However, user receives a short in-
terruption notice (e.g., two minutes) before the instance is ultimately stopped1.
This interruption notice can be used to trigger a checkpointing mechanism for
the running workloads and to rescheduling them later [53]. To enable this level of
reliability and improve resource utilization in container-based environments, we
explore existing checkpointing mechanisms and evaluate their suitability as core
primitives within the Kubernetes scheduling process in the following sections.

3.1 CRIU: Checkpoint/Restore In Userspace

CRIU [7] is a Linux utility that enables transparent system-level checkpointing
in a wide range of use cases. It is developed as an open-source project and de-
signed for checkpointing running applications or containers and later restoring
them on the same or a different system. It achieves this by using kernel interfaces
such as cgroups, ptrace, vmsplice that allow inspecting the target process tree
(container) and saving its runtime state to persistent storage. This process is
fully transparent to the application that is being checkpointed, and can be used

1 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
spot-instance-termination-notices.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html


8 V. Spišaková et al.

with a wide variety of workloads. In addition, CRIU supports optimizations that
reduce the downtime during live migration strategies. CRIU was originally de-
veloped to support container migration with OpenVZ and has been integrated
into many popular container runtimes, including runc, crun, Docker, Podman,
LXC/LXD, containerd, and CRI-O. However, the implementation across run-
times differs in some aspects. For example, Docker leverages containerd, which
in turn uses runc to perform checkpointing via CRIU’s RPC API. Podman, by
default, utilizes crun, which implements the checkpoint/restore operations di-
rectly with the libcriu library. LXC, on the other hand, interacts with CRIU
through its command-line interface. These implementation differences often lead
to varying levels of performance and feature support.

Checkpointing workloads that utilize external devices, such as GPUs, re-
quires saving and restoring the internal execution state of both the GPU and
the driver. This functionality has been enabled with CRIU through plugins for
AMD [31] and NVIDIA [13] GPUs. These plugins interact directly with the GPU
driver via recently introduced checkpointing capabilities that enable transpar-
ent checkpointing. For NVIDIA GPUs, this functionality is exposed through
a cuda-checkpoint utility [43], which allows for the execution of lock, check-
point, restore, and unlock actions for tasks running on the GPU. For AMD
GPUs, this functionality is exposed as Kernel Fusion Driver (KFD) ioctl oper-
ations [30], which can be used to perform similar actions. These plugins enable
checkpoint/restore support with both stand-alone applications and containers,
offering unified and fully-transparent CPU-GPU snapshots [52].

3.2 Alternative Checkpoint/Restore Mechanisms

The majority of existing C/R tooling originates in the HPC community, which
has long been interested and involved in the utilization of the C/R mechanism
because HPC jobs are usually long-running, and the sudden loss of all progress
is undesirable. C/R in HPC was originally and is usually implemented on the
individual application layer rather than generally due to the specific logic and
goals of each application. For example, molecular dynamics tool Gromacs [3]
can do periodic checkpoints and after the interruption, it can resume and con-
tinue, Nextflow [8] workflow manager can resume failed or interrupted compu-
tation from the last completed task. However, many scientific tools lack built-in
progress-saving mechanisms because checkpointing was not originally seen as
crucial and over time, integrating this functionality has become too difficult due
to the applications’ growing complexity.

Apart from application-level C/R, DMTCP [1] and BLCR [14] are other
well-known C/R tools in the HPC community. However, these approaches rely
on users to either write code that implements these mechanisms directly into
their application or to use specific libraries that handle checkpointing. Further-
more, BLCR is a kernel module that cannot be used with today’s kernel version.
These approaches are suboptimal, as they burden application developers and re-
searchers with the additional complexity of saving/restoring program state and
verifying that their application resumes correctly from a checkpoint. The use of



Checkpoint and Restore in Kubernetes 9

CRIU for C/R does not require any cooperation from the user or the applications;
it is generic, application-agnostic, lightweight, and can be integrated into fully
automated preemption-based scheduling and into modern cloud environments.

Recent years show that the HPC community is increasingly interested in opti-
mized resource utilization and is again pointing toward C/R. In a recent presen-
tation [54], NERSC (National Energy Research Scientific Computing Center2)
acknowledges that C/R is a crucial capability in HPC due to complex, time-
consuming computations and can facilitate scheduler optimizations. In a recent
study, Guitart [11] builds on the current trend in HPC to containerize and re-
searches the integration of CRIU and its advanced configuration options with
containerization to enable practical live migration of HPC workloads. A more
recent paper by Hoefler et al. [15] explicitly argues for the need to converge
HPC and cloud approaches and workloads through high-performance containers
and presents a comprehensive description of such platform. This shows that the
HPC community is not only actively pursuing cloud — container-based envi-
ronments — but also looking for a C/R mechanism that would be aligned with
these environments.

4 IASS: Interruption-Aware Scheduling Strategy

Integration of C/R happens as part of a scheduling strategy. The proposed sched-
uler is dynamic and treats interruptions and possible subsequent changes in the
scheduling plan as a core functionality, not as a form of exception or error. IASS
is built on top of four key characteristics:

(i) Dynamic filling-in and vacating the resources using C/R.
(ii) Providing preemption via checkpoint rather than termination-based preemp-

tion.
(iii) Inherent support for migration, survivable evictions and infrastructure-based

fault-tolerance.

Integrating IASS with Kubernetes scheduling requires targeted changes on
multiple levels. Firstly, integrating C/R functionality through CRIU into the
Kubernetes stack, and secondly, integration of scheduling decisions and C/R
related logic into the Kubernetes scheduler.

4.1 CRIU Integration in Kubernetes

Minimal support for creating container checkpoints from Kubernetes was added
in July 2022 [35] as an experimental feature. The container checkpointing func-
tionality was part of the Kubernetes Enhancement Proposal (KEP) “Forensic
Container Checkpointing” [33] and as of the current Kubernetes version, it is
enabled by default.

The forensic container checkpointing use case opened the possibility of im-
plementing only the container checkpointing functionality without the need to
2 https://www.nersc.gov

https://www.nersc.gov


10 V. Spišaková et al.

Node

 Kubernetes Control Plane

API
serverscheduler

controller-manager

etcd

Pod

CRIU
inventory
reg-files

core
pagemap

pages
inotify
pipes

pipes-data

Container

OCI Runtime

Container Runtime

descriptors

config.json

…

dev-shm.tar Buildah
(commit)

Buildah
(push)

Registry
…

containerd / CRI-O

kubelet

runc / crun

Checkpoint

Restore

Checkpoint1

2

Checkpoint 
Image

Fig. 4. An overview of the C/R workflow in Kubernetes. Checkpoint is requested
through a call to an API server which is a part of the Kubernetes control plane. The call
is subsequently passed to the specific node running a container that was requested to
be checkpointed. Each node runs a container runtime and an OCI runtime that create
and execute containers and support passing the checkpoint request to CRIU. CRIU is
used to checkpoint the CPU/GPU state and memory of running containers, which is
then packaged with into a checkpoint image and pushed to a container registry. This
checkpoint image can later be used to restore the container.

immediately provide the functionality to restore containers from a checkpoint.
As container checkpointing is a completely new concept on the Kubernetes level,
one important goal was to avoid disrupting existing functionality and introduc-
ing security risks (see Section 5.2). To achieve this, the design was limited to only
include an interface for creating checkpoints of containers, without providing a
corresponding interface for restoring them.

Figure 4 shows the placement of CRIU in the Kubernetes ecosystem. The tool
itself is installed on the physical cluster node, and calls to it are integrated into
other tools that comprise the whole stack, namely container runtimes, container
engines, the kubelet3, and the Kubernetes API. As of Kubernetes version 1.33,
the C/R feature is a functional part of Kubernetes and can be tested.

4.2 IASS Integration with the Kubernetes Scheduler

Incorporating C/R-related scheduling logic into the default Kubernetes sched-
uler involves exploring two scheduler components: the scheduling framework and
internal scheduling queues.

The Kubernetes scheduler is structured as a framework comprising two cy-
cles — scheduling (selects feasible node for a workload) and binding (commits
workload to its target node). Both cycles are implemented through multiple
plugins (see [18]), with each plugin corresponding to a distinct, customizable
phase within the cycles. Before entering the scheduling cycle, each workload

3 Agent that runs on each node within a Kubernetes cluster.



Checkpoint and Restore in Kubernetes 11

Active Queue

Backoff Queue Unschedulable 
Queue

new pods

Checkpoint 
Queue

co
m

ple
tin

g 
ba

ck
of

f

rescheduling 

applying backoff 

Scheduler

scheduling

failed failed

explicit restore or
periodic flushes

modified ordering

checkpointed

Fig. 5. Kubernetes scheduling queues with added Checkpoint Queue and modified Ac-
tive Queue ordering. New pods enter the Active Queue for processing by the scheduler.
Pods that have failed scheduling are added to the Unschedulable or Backoff queues.
After completing backoff, these pods re-enter the Active Queue for another scheduling
attempt. Checkpointed pods are added to the Checkpoint Queue, and explicit restore
requests or periodic flushes trigger their transition to the Active Queue.

goes through Pre-enqueue plugins and subsequently the QueueSort plugin that
together determine the most suitable workload for the next scheduling cycle.

Pre-enqueue plugins maintain internal queues for scheduling requests and
decide which queue the workload enters. When a workload is submitted into the
Kubernetes cluster, it is placed in one of the three existing queues. If all workload
requirements are met, the workload enters Active queue. If the workload cannot
be scheduled, it is moved to either Unschedulable or Backoff queues [19]. The
scheduler periodically re-evaluates and moves workloads from these queues back
to the Active queue.

At this queue level, we introduce of a dedicated Checkpoint queue for check-
pointed workloads with its own internal ordering (see Figure 5). This queue
implements workload-specific logic for reallocating workloads and moving them
from this queue back to the Active queue, e.g., to backfill free resources by
restoring preempted workloads with long-running tasks such as machine learn-
ing training jobs. This queue transition can be triggered manually by issuing a
restore request at the Kubernetes API level or automatically by periodic flush re-
quest. Periodic flushing prevents starvation of previously checkpointed workloads
and ensures that once-started workloads can eventually complete. If a workload
is flushed from the Checkpoint queue, it is likely to remain in either Active or
Backoff queue as all required objects should already exist in the system.

The selection order of the highest-priority workload from the Active queue
for the next scheduling cycle can be customized in the QueueSort plugin. By de-
fault, workloads are sorted primarily by priority and secondarily by arrival time.
The IASS QueueSort extends this default behavior with the logic that accounts
for the workloads originating from the Checkpoint queue, allowing for priority
scheduling based on workload type, e.g, to prioritize interactive workloads, or
workloads whose checkpoint count exceeds a configurable threshold (to prevent
starvation).



12 V. Spišaková et al.

Scheduling Cycle

P
re

Fi
lte

r

Fi
lte

r

P
re

S
co

re

IA
SS

 S
co

re

N
or

m
al

iz
e 

S
co

re

R
es

er
ve

P
er

m
it

IASS 
QueueSort

IA
SS

PostFilter

Binding 
Cycle

Pre-Enqueue

Fig. 6. Simplified Kubernetes scheduler architecture, highlighting the QueueSort, Post-
Filter and Score plugins implementing the Interruption-Aware Scheduling Strategy.

The key components of IASS are integrated into the PostFilter phase, which
implements preemption, and the Score phase, which is responsible for ranking
suitable nodes (see Figure 6).The IASS PostFilter plugin enables checkpoint-
based workload preemption for through C/R capabilities rather than simple
deletion. This PostFilter plugin can be further extended to support more ad-
vanced preemption strategies that are specific to the type of workload, its du-
ration, the estimated checkpoint overhead in terms of storage and performance,
as well as the checkpoint frequency.

Our previous work explored a new priority class [29] that enables preemption
of low-priority workloads using the C/R functionality. IASS integrates this pre-
emption logic directly into the scheduler, which eliminates the requirement for
workloads to use a particular priority class. In particular, the IASS Score phase
considers C/R-enabled workloads when assessing the suitability of a node. The
scheduler improves placement for the workload by ranking nodes higher if they
meet certain criteria, such as hosting more checkpointable workloads or having
larger local storage. These nodes are preferred because their existing tasks can
be preempted efficiently to free up resources and ensure that there is sufficient
capacity to store checkpoints.

A natural question that follows is: What are the advantages of integrating
IASS into the default scheduler over developing a specialized one like Volcano4?
The primary advantage of integrating IASS into the default scheduler is a signif-
icantly lower barrier to adoption. Our approach leverages the core Kubernetes
components and eliminates the overhead of deploying and managing a separate
scheduler. We build IASS on the recently introduced native support for con-
tainer checkpointing, and explore advanced preemption mechanisms that can be
applied to a broad range of use cases within the existing ecosystem. This na-
tive integration significantly improves resource efficiency as it avoids the loss of
computational progress for long-running workloads.

4 https://volcano.sh/en/

https://volcano.sh/en/


Checkpoint and Restore in Kubernetes 13

5 Open Problems: IASS Integration with Kubernetes

To demonstrate the practical feasibility of IASS, we have created several proto-
types showcasing the complete C/R process covering various use-cases, includ-
ing interactive Jupyter Notebooks [48,57], video streaming [47], an in-memory
database [46], and a self-hosted AI platform [45]. We further demonstrated IASS
mechanisms with GPU-accelerated workloads such as machine learning train-
ing [52] and large language model inference [40,49].

The integration of CRIU with Kubernetes provides a general solution that
enables transparent checkpointing for many use cases. The initial support is in-
tegrated as container checkpointing for forensic analysis, focused only on the
checkpointing functionality and leaving the restore functionality as a subsequent
development phase. It is a foundational use case that introduced the C/R func-
tionality as an alpha feature in Kubernetes [34] but it addresses only a specific
goal. Moreover, it is currently possible to checkpoint and restore only individ-
ual containers (including GPU ones), not entire Pod objects5, even though it is
technically feasible6. More robust C/R support in Kubernetes requires address-
ing several key challenges which can be broadly categorized into five areas: design
and architecture, security, networking, cost-awareness, and policies. The follow-
ing subsections delve into each of these areas, discussing the specific problems
and potential solutions.

5.1 Design and Architecture: Checkpointed/Restored Workload
Specification and Restore Process

When considering a checkpointed and restored Pod, the key question is: “Should
this Pod be a new object, or is it the old one?”. The problem is analogous to
the Ship of Theseus thought experiment, yet it might be possible to choose an
answer. Additionally, addressing container’s state (checkpointed, restored) is a
useful information not only for Kubernetes itself but also for other systems too,
e.g., external workflow systems that periodically verify workload status.

Design Specification of Checkpointed/Restored Pod. According to the
official documentation [26], a Pod’s unique identifier (UID) is intended to be
unique across the entire lifetime of a Kubernetes cluster as it is intended to
distinguish between historical occurrences of similar entities. Therefore, it is
crucial to answer whether Pod UID should be retained or new one assigned, as
this answers the question about the identity and continuity of a Pod.

From the continuity point of view, retaining the same Pod UID is a reasonable
choice as the restored Pod is essentially the same entity. Furthermore, the same
5 The smallest deployable unit in Kubernetes clusters, representing a group of one or

more containers and serving as a typical workload.
6 In the initial phase of integrating checkpointing into Kubernetes, a sample imple-

mentation of full Pod live workload migration was implemented but was not accepted
by the community [32].



14 V. Spišaková et al.

UID preserves Pod’s identity in relation to other objects (e.g, owner references)
and avoids potential issues with updating references to the original Pod. On the
other side, assigning a new UID for the restored Pod creates a clear distinction
between historical occurrences and current state and enables a “fresh” start,
allowing for transparent changes in Pod configuration (e.g., change in resource
requests) and reducing the risk of conflicts with other components that may have
cached references to the original object. There are arguments for both approaches
but we argue that retaining UID would be the most logical approach. In essence,
restoring the Pod from checkpoint does not create a new, distinct entity, it merely
restores the state and resumes the operation. Retaining the same Pod ID also
contributes to the sense of continuity and greatly simplifies interaction with other
Kubernetes components and external systems that rely on Pod identity.

Despite preserving the Pod UID, the system must provide clear information
about whether the object is in the checkpointed or already restored state be-
cause it affects other decisions. Additional metadata, labels or annotations could
be added to the Pod to indicate state change but due to the wider implications
C/R has on the system, a more “built-in” approach should be chosen. According
to the official API conventions [17], using Pod phases is deprecated and con-
ditions should be employed instead. Conditions provide a standard mechanism
for higher-level status reporting and besides being a good way of passing infor-
mation to users, they also serve as a way of communication between internal
and external Kubernetes components. API conventions state that new condition
types may be added; thus, we deem this status property a viable place for in-
troducing a new state (condition) that clients need to monitor and the system
acknowledges.

Restore Process. The current version of Kubernetes does not provide an in-
terface to directly restore containers. Instead, this process bypasses the entire
Kubernetes lifecycle management system and relies on the container engine’s
ability to recognize checkpoints stored within container images. In particular, to
restore a container, a new image must be created from a checkpoint archive and
then a completely new container running this image must be launched in Kuber-
netes, along with a new Pod specification. Such approach prevents Kubernetes
from keeping track of the container’s checkpoint/restore history.

To address this limitation, the restore process should be natively integrated
within the Kubernetes API which calls lower-level restoration endpoints. Fur-
thermore, Pod object definition should be retained as an empty shell, devoid
of its containerized contents, to be used to restore the Pod. This way, upon
restoration, the checkpointed container would be reinstated and linked back to
the original Pod, effectively reviving the Pod’s functionality. Once the container
is started, Pod condition should be again updated to reflect restored and run-
ning (failed/pending) nature of the Pod. This approach allows to extend the Pod
lifecycle with C/R states that remain under the purview of Kubernetes.



Checkpoint and Restore in Kubernetes 15

5.2 Security: Checkpoint Encryption

A container checkpoint contains a snapshot of the application memory, which
might include sensitive data such as passwords, keys, and API tokens. With con-
tainer checkpoints potentially holding sensitive data, security becomes a critical
concern for all the use cases. Our recent work extending CRIU with built-in sup-
port for encryption creates a foundation for improving the security of the C/R
process [51]. Since the technical implementation happens in CRIU, the broader
integration in the Kubernetes environment means finding a set of best practices
and security standards and define the integration design.

In systems design, security features should be enabled by default, ensuring
all users benefit from protection without the need to take any action. Opting
out of a security feature should be managed by a permission system that would
allow authorized users or special cases to disable the security feature and would
also serve as a activity record tool for audits. Disabling the feature should be
transparent and provide the user with warnings or alerts, informing them about
potential risks and consequences. Based on these principles, encryption should
be enabled by default on a kubelet level, with the necessary configuration details
located in a kubelet configuration file that is located on every cluster node and
features node-specific kubelet configuration. Existing Kubernetes primitives such
as Role-Based Access Control (RBAC), admission controllers and Audit API
could be leveraged to implement a permission system.

5.3 Networking: IP Address Changes and Distributed C/R

The limitations of Kubernetes network implementation pose challenges for use
cases that rely on seamless migration and network continuity, especially the
workloads with zero-downtime requirements. The Kubernetes networking ecosys-
tem is based on a Container Network Interface (CNI) with several implementa-
tions such as Calico, Cilium, Weave. These CNIs implement networking uniquely,
but Kubernetes mandates that each cluster node has its own network prefix for
Pods. As a result, when a Pod is migrated from one node to another, regardless
of the CNI implementation used, the Pod’s primary IP address changes to a new
subnet, preventing it from being migrated with the Pod. This results in the Pod’s
network connection being irretrievably lost. Additionally, even if a Pod does not
have an established connection and only listens for incoming connections at a
specific Pod IP, the inability to migrate the specific IP prevents the restoration
of the listening socket.

A potential solution to this challenge lies in the Multus CNI [25], which
permits the allocation of multiple networks and IP addresses to a Pod. This
additional network does not require subnets for nodes, thereby facilitating IP
migration. We propose assigning multiple networks to Pods requiring stable net-
work connections (such as those running MPI applications) and utilizing the
secondary network for communication. This approach can ensure consistent net-
work connectivity for such Pods, even during migration. Another option is to
use a load balancer on the data plane that dynamically reroutes packets to the



16 V. Spišaková et al.

correct IP address after container migration [10]. This approach can be further
improved by offloading the load balancing functionality to a high-performance
P4 programmable network device [23,16].

Addressing the stable IP address challenge would pave the way for the im-
plementation of more advanced features such as distributed checkpointing. This
involves checkpointing multiple containers or Pods to ensure that a consistent
global snapshot has been created and distributed applications can be restored
correctly. However, CRIU does not provide native support for checkpoint coor-
dination. We recently proposed a coordinated checkpointing model [44] followed
by a proof of concept conference presentations [50,42].

5.4 Cost Awareness: Provenance and Price of Checkpoint/Restore

While C/R has the potential to improve resource utilization, efficiency and fault-
tolerance, this functionality requires additional storage to save checkpoints, net-
work bandwidth for data transfers, and adds performance overheads. It is im-
portant to carefully assess which workloads are feasible for C/R and when it is
worthy to do so. For example, frequent checkpointing or workloads generating
very large checkpoints can quickly exhaust available storage capacity. In such
cases, checkpointing not only imposes significant storage demands but also con-
sumes additional compute and I/O resources, potentially interfering with the
primary execution of the workload. Thus, the number of checkpoints, their fre-
quency, and required storage capacity, depends on the specific workloads and use
case. The checkpoint-restore operator [5] addresses this by limiting the number
of checkpoints per selected object. This approach can be further optimized by
integrating data compression mechanisms to decrease the size of checkpoints.

The cost of the restoration process can be particularly high for large check-
points, primarily due to the time-consuming steps involved in creating container
images and performing push/pull operations with the container image registry.
To evaluate these overheads, we conducted a series of C/R experiments across a
set of applications:

– A simple small container running a shell counter that prints numbers.
– A container that unpacks Linux kernel sources (6.8.0).
– A container that installs and runs stressapptest7 application and allocates

8GB of memory. Purpose is to maximize randomized traffic to memory from
processor and I/O, with the intent of creating a realistic high load situation
to test the existing hardware devices in a computer .

As shown in Table 1, converting a checkpoint archive into container image and
uploading it to a registry introduces significant delays, especially for large check-
points. A promising optimization is to introduce support for direct restore from
checkpoint archives, and avoid the image build stages. In addition, the results
also show that collecting changes in almost 89,000 files in the overlay filesys-
tem (Kernel untar case) takes a considerable amount of time (Chckpt.Time),
7 (https://github.com/stressapptest)

https://github.com/stressapptest


Checkpoint and Restore in Kubernetes 17

Table 1. Table summarizing checkpoint/restore aspects in Kubernetes: size, time,
image creation/upload, and restore time.

Scenario Chckpt.Size Chckpt.Time Restore Image C/U Restore Time

Simple counter 455 kB 0.93 s 2.1 s 1.0 s
Linux kernel untar 398 MB 68.85 s 16.6 s 8.0 s
stressapptest 8 GB 87.36 s 292.8 s 66.0 s

similar to saving approximately 8 GB of memory (stressapptest). Thus, both
operations (saving large memory or tracking a lot of file changes) incur signifi-
cant performance overhead. Furthermore, these results show that the duration
of checkpoint creation is not directly related to the checkpoint size but rather
to the complexity of the operation, which can vary for different workloads.

5.5 Policies: Checkpoint/Restore Transparency to Users

The integration of C/R mechanisms within systems, particularly in environ-
ments such as the Kubernetes scheduler, introduces a range of policy-related
challenges that must be addressed. While C/R is designed to function transpar-
ently between the infrastructure and workloads, wider integration neglects the
perspectives of users and external entities. As a result, the implications of C/R
may not be readily apparent to these actors, necessitating the development of
clear and comprehensive policies.

One key concern is how and if at all to communicate the existence and func-
tionality of C/R to users and external systems. For instance, in workflow man-
agement scenarios, tasks are typically interdependent, wherein subsequent tasks
rely on the successful completion of prior steps. If a preceding task is inter-
rupted and enters a checkpointed state, should the subsequent tasks be paused,
cancelled, or otherwise adjusted? Establishing robust policies for these scenarios
is critical to ensure operational continuity and user awareness. Considerations
must also be given to the trade-offs associated with checkpointing in broader
cloud environments. If a user’s workload is checkpointed, what advantages or
compensations can be offered? This could include improved resource allocation,
cost reductions, or guarantees of workload integrity and availability.

6 Related Work

Some of the first works on modern resource management with C/R have already
been explored in a paper by Li et al. [20] that employs CRIU for checkpoint-
based preemption of containers in Hadoop YARN. In one of the first discussions
on this topic at the Linux Plumbers conference, Google described how they use
CRIU-based task migration as a method for improving the efficiency and uti-
lization within large-scale production clusters [56]. A study by Chaudhary et
al. [6] further explored the use of CRIU and a custom Kubernetes scheduler to



18 V. Spišaková et al.

create a fair scheduling using migration (based on C/R) instead of destructive,
termination-based preemption. Mangkhangcharoen et al. [22] provides a compre-
hensive and comparative study of the applicability of existing C/R mechanisms
(incl. CRIU) to checkpoint training states of deep learning (DL) applications
among Kubernetes nodes at the edge and later resuming when resources are
available (as edge is known for strict resource constraints). A paper by Shukla
et al. [39] presents a scheduling service for DL training and inference workloads
that is based on the ability to C/R these workloads in Microsoft’s distributed
infrastructure.

To the best of our knowledge, no prior work has addressed the domain-
specific challenges of integrating transparent C/R into the default Kubernetes
scheduler. Existing studies typically apply C/R within Kubernetes to improve
fault tolerance or enable live migration, but they do not directly incorporate
these mechanisms into the default scheduler.

A wider conceptual architectural proposal on C/R of stateful containers pro-
totyped in Kubernetes, albeit only to achieve fault-tolerance, was presented in
paper by Müller et al. [24]. A practical and particularly liked approach to re-
alize C/R is a Kubernetes Operator pattern. Operators use custom resource
definitions to introduce new object types to Kubernetes that are managed by a
set of dedicated controllers in an infinite loop. This pattern is often used when
introducing new functionality into the ecosystem since it only extends environ-
ment’s functionality and fully customizable resource definitions and controller
allow for any operational logic. A paper by Schmidt [38] proposes a Kubernetes
operator that enables to perform checkpoint/restore for a failover use case —
monitored applications are regularly checkpointed and in case of need, the ap-
plication is restored from the latest checkpoint. In a paper Zhang et al. [58]
introduce a measure for stateful pod migration using CRIU and Operator pat-
tern. The MemVerge Transparent Checkpoint Operator8 automatically creates
a snapshot for Kubernetes Pods when needed and subsequently restarts the Pod
from that snapshot. GRIT9 is a project that prototypes automated GPU work-
load migration in a Kubernetes and implements custom resource Checkpoint.
Slightly different idea was proposed by Onuş at KubeCon Europe 2024 [27] where
he proposed a CRIU command wrapper that executes given command, check-
points it when container is terminated (and restores from checkpoint); the tool
is mainly designed for node shutdown and restart scenarios.

7 Conclusion

We propose IASS, an Interruption-Aware Scheduling Strategy for the Kubernetes
container orchestrator that leverages transparent C/R as a core scheduling prim-
itive. Motivated by the evolving cloud computing architectures and real-world
workload characteristics, IASS brings a new solution that provides automated
8 https://docs.memverge.com/KubernetesTransparentCheckpointOperator/
latest/

9 https://github.com/kaito-project/grit

https://docs.memverge.com/KubernetesTransparentCheckpointOperator/latest/
https://docs.memverge.com/KubernetesTransparentCheckpointOperator/latest/
https://github.com/kaito-project/grit


Checkpoint and Restore in Kubernetes 19

mechanisms to dynamically preempt, migrate, and reschedule running workloads
to improve resource utilization. These mechanisms are infrastructure optimiza-
tions that are completely transparent to the user.

Future work will focus on the gradual adoption of IASS concepts tailored
for a set of workloads within our Kubernetes environment by targeting those
with small checkpoint sizes to minimize application downtime and the associ-
ated overhead. To further understand the implications of IASS across different
workload types, future work will conduct a comprehensive cost-benefit analysis
that considers multiple scenarios. We also recognize the importance of foster-
ing collaboration with the Kubernetes community in order to achieve consensus
across different working groups and address the broader community objectives.
Resource underutilization remains a major challenge in cloud environments, and
C/R can enhance the efficiency of scheduling and help solve the problem.

Acknowledgments. Computational resources were provided by the e-INFRA CZ
project (ID:90254), supported by the Ministry of Education, Youth and Sports of the
Czech Republic.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Ansel, J., Arya, K., Cooperman, G.: Dmtcp: Transparent checkpointing for cluster
computations and the desktop. In: 2009 IEEE international symposium on parallel
& distributed processing. pp. 1–12. IEEE (2009)

2. Baset, S.A., Wang, L., Tang, C.: Towards an understanding of oversubscrip-
tion in cloud. In: 2nd USENIX Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 12). USENIX
Association, San Jose, CA (Apr 2012), https://www.usenix.org/conference/
hot-ice12/workshop-program/presentation/baset

3. Bekker, H., Berendsen, H.J.C., Dijkstra, E., Achterop, S., van Drunen, R., van der
Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., Renardus, M.: GROMACS - a
parallel computer for molecular-dynamics simulations. In: DeGroot, R., Nadrchal,
J. (eds.) PHYSICS COMPUTING ’92. pp. 252–256. World Scientific Publishing
(1993)

4. Brum, R., Teylo, L., Arantes, L., Sens, P.: Ensuring application continuity with
fault tolerance techniques. In: Borin, E., Drummond, L.M.A., Gaudiot, J.L., Melo,
A., Melo Alves, M., Navaux, P.O.A. (eds.) High Performance Computing in Clouds
: Moving HPC Applications to a Scalable and Cost-Effective Environment, pp. 191–
212. Springer International Publishing, Cham (2023). https://doi.org/10.1007/
978-3-031-29769-4_10, https://doi.org/10.1007/978-3-031-29769-4_10

5. Checkpoint-Restore operator (2025), https://github.com/checkpoint-restore/
checkpoint-restore-operator

6. Chaudhary, S., Ramjee, R., Sivathanu, M., Kwatra, N., Viswanatha, S.: Balancing
efficiency and fairness in heterogeneous gpu clusters for deep learning. In: Proceed-
ings of the Fifteenth European Conference on Computer Systems. EuroSys ’20,
Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3342195.3387555, https://doi.org/10.1145/3342195.3387555

https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/baset
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/baset
https://doi.org/10.1007/978-3-031-29769-4_10
https://doi.org/10.1007/978-3-031-29769-4_10
https://doi.org/10.1007/978-3-031-29769-4_10
https://doi.org/10.1007/978-3-031-29769-4_10
https://doi.org/10.1007/978-3-031-29769-4_10
https://github.com/checkpoint-restore/checkpoint-restore-operator
https://github.com/checkpoint-restore/checkpoint-restore-operator
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555


20 V. Spišaková et al.

7. CRIU: Checkpoint/restore in userspace. https://criu.org/ (2025), accessed:
2025-02-11

8. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame,
C.: Nextflow enables reproducible computational workflows. Nature Biotechnology
35(4), 316–319 (Apr 2017). https://doi.org/10.1038/nbt.3820, http://www.
nature.com/articles/nbt.3820

9. e-INFRA CZ: e-infrastructure for research and development in the Czech Republic
(February 2025), https://www.e-infra.cz/en

10. Estes, P., Murakami, S.: Live container migration on OpenStack.
https://www.openstack.org/summit/barcelona-2016/summit-schedule/
events/15091/live-container-migration-on-openstack (Oct 2016), open-
Stack Summit Barcelona

11. Guitart, J.: Practicable live container migrations in high performance comput-
ing clouds: Diskless, iterative, and connection-persistent. Journal of Systems Ar-
chitecture 152, 103157 (2024). https://doi.org/https://doi.org/10.1016/j.
sysarc.2024.103157, https://www.sciencedirect.com/science/article/pii/
S1383762124000948

12. Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., Bao, Y.: Who limits
the resource efficiency of my datacenter: an analysis of alibaba datacenter traces.
In: Proceedings of the International Symposium on Quality of Service. IWQoS ’19,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3326285.3329074, https://doi.org/10.1145/3326285.3329074

13. Gurfinkel, S.: Checkpointing CUDA Applications with CRIU. https://developer.
nvidia.com/blog/checkpointing-cuda-applications-with-criu/ (2024)

14. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (blcr) for linux clus-
ters. In: Journal of Physics: Conference Series. vol. 46, p. 494. IOP Publishing
(2006)

15. Hoefler, T., Copik, M., Beckman, P., Jones, A., Foster, I., Parashar, M., Reed, D.,
Troyer, M., Schulthess, T., Ernst, D., Dongarra, J.: XaaS: Acceleration as a service
to enable productive high-performance cloud computing. Computing in Science &
Engineering 26(3), 40–51 (2024). https://doi.org/10.1109/MCSE.2024.3382154

16. Kosorin, S.: P4-enabled container migration in Kubernetes. https:
//summerofcode.withgoogle.com/programs/2024/projects/sYbpOJhD (2024)

17. Kubernetes API conventions. https://github.com/kubernetes/community/
blob/master/contributors/devel/sig-architecture/api-conventions.md
(2023)

18. Kubernetes scheduling framework. https://kubernetes.io/docs/concepts/
scheduling-eviction/scheduling-framework/ (2023)

19. Kubernetes scheduler queues. https://github.com/kubernetes/community/
blob/master/contributors/devel/sig-scheduling/scheduler_queues.md
(2021)

20. Li, J., Pu, C., Chen, Y., Talwar, V., Milojicic, D.: Improving preemptive scheduling
with application-transparent checkpointing in shared clusters. In: Proceedings of
the 16th Annual Middleware Conference. p. 222–234. Middleware ’15, Association
for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.
1145/2814576.2814807, https://doi.org/10.1145/2814576.2814807

21. Liu, P.: Convergence of high performance computing, big data, and machine learn-
ing applications on containerized infrastructures. Ph.D. thesis, Universitat Politèc-
nica de Catalunya (2023)

https://criu.org/
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
http://www.nature.com/articles/nbt.3820
http://www.nature.com/articles/nbt.3820
https://www.e-infra.cz/en
https://www.openstack.org/summit/barcelona-2016/summit-schedule/events/15091/live-container-migration-on-openstack
https://www.openstack.org/summit/barcelona-2016/summit-schedule/events/15091/live-container-migration-on-openstack
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103157
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103157
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103157
https://doi.org/https://doi.org/10.1016/j.sysarc.2024.103157
https://www.sciencedirect.com/science/article/pii/S1383762124000948
https://www.sciencedirect.com/science/article/pii/S1383762124000948
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu/
https://developer.nvidia.com/blog/checkpointing-cuda-applications-with-criu/
https://doi.org/10.1109/MCSE.2024.3382154
https://doi.org/10.1109/MCSE.2024.3382154
https://summerofcode.withgoogle.com/programs/2024/projects/sYbpOJhD
https://summerofcode.withgoogle.com/programs/2024/projects/sYbpOJhD
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduler_queues.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scheduling/scheduler_queues.md
https://doi.org/10.1145/2814576.2814807
https://doi.org/10.1145/2814576.2814807
https://doi.org/10.1145/2814576.2814807
https://doi.org/10.1145/2814576.2814807
https://doi.org/10.1145/2814576.2814807


Checkpoint and Restore in Kubernetes 21

22. Mangkhangcharoen, S., Haga, J., Rattanatamrong, P.: Migrating deep learn-
ing data and applications among kubernetes edge nodes. In: 2021 IEEE
23rd Int Conf on High Performance Computing & Communications; 7th Int
Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int
Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCCDSSSmartCityDependSys). pp. 2004–2010 (2021). https://doi.org/10.
1109/HPCC-DSS-SmartCity-DependSys53884.2021.00299

23. Miao, R., Zeng, H., Kim, C., Lee, J., Yu, M.: Silkroad: Making stateful layer-
4 load balancing fast and cheap using switching ASICs. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. p.
15–28. SIGCOMM ’17, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3098822.3098824, https://doi.org/10.
1145/3098822.3098824

24. Müller, R.H., Meinhardt, C., Mendizabal, O.M.: An architecture proposal
for checkpoint/restore on stateful containers. In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. p. 267–270. SAC ’22, Asso-
ciation for Computing Machinery, New York, NY, USA (2022). https://doi.org/
10.1145/3477314.3507221, https://doi.org/10.1145/3477314.3507221

25. Multus CNI. https://github.com/k8snetworkplumbingwg/multus-cni
26. Object names and IDs. https://kubernetes.io/docs/concepts/overview/

working-with-objects/names/#uids
27. Onuş, M.: The party must go on - resume pods after spot instance shut down.

https://sched.co/1YeP3 (2024)
28. Parayil, A., Zhang, J., Qin, X., Goiri, I.n., Huang, L., Zhu, T., Bansal, C.: To-

wards workload-aware cloud efficiency: A large-scale empirical study of cloud work-
load characteristics. In: Proceedings of the 16th ACM/SPEC International Confer-
ence on Performance Engineering. p. 136–146. ICPE ’25, Association for Comput-
ing Machinery, New York, NY, USA (2025). https://doi.org/10.1145/3676151.
3722008, https://doi.org/10.1145/3676151.3722008

29. Radostin Stoyanov, A.R.: Preemptive scheduling of stateful GPU Inten-
sive HPC applications in Kubernetes. https://sc23.conference-program.com/
presentation/?id=misc217&sess=sess448 (2023)

30. Rajneesh Bhardwaj: drm/amdkfd: CRIU Introduce Checkpoint-Restore APIs
(2021), linux Commit ID: 3698807094ecae945436921325f5c309d1123f11

31. Rajneesh Bhardwaj, Felix Kuehling, D.Y.S.: Fast checkpoint restore for GPUs.
https://lpc.events/event/11/contributions/891 (2021), accessed: 2023-08-15

32. Reber, A.: Add –checkpoint to drain. https://github.com/kubernetes/
kubernetes/pull/97194 (2020)

33. Reber, A.: Forensic container checkpointing. https://github.com/kubernetes/
enhancements/issues/2008 (2020)

34. Reber, A.: Forensic container checkpointing in Kubernetes. https://kubernetes.
io/blog/2022/12/05/forensic-container-checkpointing-alpha/ (2022)

35. Reber, A.: Minimal checkpointing support. https://github.com/kubernetes/
kubernetes/pull/104907 (2022)

36. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing. SoCC ’12, Association for Comput-
ing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2391229.
2391236, https://doi.org/10.1145/2391229.2391236

https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00299
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00299
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00299
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00299
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3477314.3507221
https://doi.org/10.1145/3477314.3507221
https://doi.org/10.1145/3477314.3507221
https://doi.org/10.1145/3477314.3507221
https://doi.org/10.1145/3477314.3507221
https://github.com/k8snetworkplumbingwg/multus-cni
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#uids
https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#uids
https://sched.co/1YeP3
https://doi.org/10.1145/3676151.3722008
https://doi.org/10.1145/3676151.3722008
https://doi.org/10.1145/3676151.3722008
https://doi.org/10.1145/3676151.3722008
https://doi.org/10.1145/3676151.3722008
https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://sc23.conference-program.com/presentation/?id=misc217&sess=sess448
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=36988070
https://lpc.events/event/11/contributions/891
https://github.com/kubernetes/kubernetes/pull/97194
https://github.com/kubernetes/kubernetes/pull/97194
https://github.com/kubernetes/enhancements/issues/2008
https://github.com/kubernetes/enhancements/issues/2008
https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha/
https://github.com/kubernetes/kubernetes/pull/104907
https://github.com/kubernetes/kubernetes/pull/104907
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236


22 V. Spišaková et al.

37. Rodrigo, G.P., Östberg, P.O., Elmroth, E., Antypas, K., Gerber, R., Ramakrish-
nan, L.: Towards understanding hpc users and systems: A nersc case study. Journal
of Parallel and Distributed Computing 111, 206–221 (2018). https://doi.org/
https://doi.org/10.1016/j.jpdc.2017.09.002, https://www.sciencedirect.
com/science/article/pii/S0743731517302563

38. Schmidt, H., Rejiba, Z., Eidenbenz, R., Förster, K.T.: Transparent fault tolerance
for stateful applications in kubernetes with checkpoint/restore. In: 2023 42nd Inter-
national Symposium on Reliable Distributed Systems (SRDS). pp. 129–139 (2023).
https://doi.org/10.1109/SRDS60354.2023.00022

39. Shukla, D., Sivathanu, M., Viswanatha, S., Gulavani, B., Nehme, R., Agrawal, A.,
Chen, C., Kwatra, N., Ramjee, R., Sharma, P., Katiyar, A., Modi, V., Sharma,
V., Singh, A., Singhal, S., Welankar, K., Xun, L., Anupindi, R., Elangovan, K.,
Rahman, H., Lin, Z., Seetharaman, R., Xu, C., Ailijiang, E., Krishnappa, S.,
Russinovich, M.: Singularity: Planet-scale, preemptive and elastic scheduling of
ai workloads (2022), https://arxiv.org/abs/2202.07848

40. Spišáková, V., Stoyanov, R., Reber, A.: Efficient transparent checkpointing of
AI/ML workloads in kubernetes. In: Proceedings of KubeCon + CloudNativeCon
Europe 2025. Cloud Native Computing Foundation (Apr 2025)

41. Spišaková, V., Klusáček, D., Hejtmánek, L.: Using Kubernetes in academic en-
vironment: Problems and approaches. In: Klusáček, D., Julita, C., Rodrigo, G.P.
(eds.) Job Scheduling Strategies for Parallel Processing. pp. 235–253. Springer Na-
ture Switzerland, Cham (2023)

42. Spišaková, V., Stoyanov, R., Reber, A.: Checkpoint coordination for distributed
containerized applications. https://lpc.events/event/18/contributions/1803/
(2024)

43. Steven Gurfinkel: CUDA Checkpoint and Restore Utility. https://github.com/
NVIDIA/cuda-checkpoint

44. Stoyanov, R.: Checkpointing and rollback-recovery of distributed applications in
Kubernetes. https://radostin.io/files/Red-Hat-RIG-13-04-2023.pdf (2023)

45. Stoyanov, R.: Container Checkpoint/Restore of Open-WebUI + Ollama (2024),
https://youtu.be/SObC5tZ-MbM?si=_BjtnxEkM9T-Dqhw

46. Stoyanov, R.: Container Checkpoint/Restore of Redis (2024), https://youtu.be/
-7lC7caiYTI?si=svZPdY-b-Rauah4t

47. Stoyanov, R.: Container Checkpoint/Restore of Restreamer (2024), https://
youtu.be/ITWi15X7j78?si=6xBJ075kEuz5mqaj

48. Stoyanov, R.: Container checkpoint/restore of a Jupyter Notebook (2025), https:
//youtu.be/WQNmKMCZ5wk?si=WgxmW54FXCooawrq

49. Stoyanov, R.: Optimizing resource utilization for interactive GPU workloads
(2025), https://youtu.be/40qKIU1pj88?si=aB-MJ_8Wa_5TdG_u

50. Stoyanov, R., Reber, A.: Enabling coordinated checkpointing for distributed HPC
applications. https://sched.co/1YeT4 (2024)

51. Stoyanov, R., Reber, A., Ueno, D., Clapiński, M., Vagin, A., Bruno, R.: Towards
efficient end-to-end encryption for container checkpointing systems. In: Proceedings
of the 15th ACM SIGOPS Asia-Pacific Workshop on Systems. p. 60–66. APSys ’24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3678015.3680477, https://doi.org/10.1145/3678015.3680477

52. Stoyanov, R., Spišaková, V., Ramos, J., Gurfinkel, S., Vagin, A., Reber, A., Ar-
mour, W., Bruno, R.: CRIUgpu: Transparent Checkpointing of GPU-Accelerated
Workloads (2025), https://arxiv.org/abs/2502.16631

https://doi.org/https://doi.org/10.1016/j.jpdc.2017.09.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.09.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.09.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.09.002
https://www.sciencedirect.com/science/article/pii/S0743731517302563
https://www.sciencedirect.com/science/article/pii/S0743731517302563
https://doi.org/10.1109/SRDS60354.2023.00022
https://doi.org/10.1109/SRDS60354.2023.00022
https://arxiv.org/abs/2202.07848
https://lpc.events/event/18/contributions/1803/
https://github.com/NVIDIA/cuda-checkpoint
https://github.com/NVIDIA/cuda-checkpoint
https://radostin.io/files/Red-Hat-RIG-13-04-2023.pdf
https://youtu.be/SObC5tZ-MbM?si=_BjtnxEkM9T-Dqhw
https://youtu.be/-7lC7caiYTI?si=svZPdY-b-Rauah4t
https://youtu.be/-7lC7caiYTI?si=svZPdY-b-Rauah4t
https://youtu.be/ITWi15X7j78?si=6xBJ075kEuz5mqaj
https://youtu.be/ITWi15X7j78?si=6xBJ075kEuz5mqaj
https://youtu.be/WQNmKMCZ5wk?si=WgxmW54FXCooawrq
https://youtu.be/WQNmKMCZ5wk?si=WgxmW54FXCooawrq
https://youtu.be/40qKIU1pj88?si=aB-MJ_8Wa_5TdG_u
https://sched.co/1YeT4
https://doi.org/10.1145/3678015.3680477
https://doi.org/10.1145/3678015.3680477
https://doi.org/10.1145/3678015.3680477
https://doi.org/10.1145/3678015.3680477
https://doi.org/10.1145/3678015.3680477
https://arxiv.org/abs/2502.16631


Checkpoint and Restore in Kubernetes 23

53. Teylo, L., Brum, R.C., Arantes, L., Sens, P., Drummond, L.M.d.A.: Develop-
ing checkpointing and recovery procedures with the storage services of amazon
web services. In: Workshop Proceedings of the 49th International Conference on
Parallel Processing. ICPP Workshops ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3409390.3409407,
https://doi.org/10.1145/3409390.3409407

54. Timalsina, M.: Checkpointing and restarting jobs with DMTCP inside the
container. https://www.nersc.gov/assets/DataDay2024/Checkpoint-Restart_
DataDay_24.pdf (2024)

55. Tirmazi, M., Barker, A., Deng, N., Haque, M.E., Qin, Z.G., Hand, S., Harchol-
Balter, M., Wilkes, J.: Borg: the next generation. In: Proceedings of the Fifteenth
European Conference on Computer Systems. EuroSys ’20, Association for Comput-
ing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3342195.
3387517, https://doi.org/10.1145/3342195.3387517

56. Victor Marmol, A.T.: Task migration at scale using CRIU. https://lpc.events/
event/2/contributions/69/ (2018)

57. Viktória Spišaková, R.S.: Optimizing resource utilization for interactive GPU work-
loads with transparent container checkpointing (2025)

58. Zhang, H., Wu, S., Fan, H., Huang, Z., Xue, W., Yu, C., Ibrahim, S., Jin, H.:
Kubespt: Stateful pod teleportation for service resilience with live migration. IEEE
Transactions on Services Computing 18(3), 1500–1514 (2025). https://doi.org/
10.1109/TSC.2025.3564888

https://doi.org/10.1145/3409390.3409407
https://doi.org/10.1145/3409390.3409407
https://doi.org/10.1145/3409390.3409407
https://www.nersc.gov/assets/DataDay2024/Checkpoint-Restart_DataDay_24.pdf
https://www.nersc.gov/assets/DataDay2024/Checkpoint-Restart_DataDay_24.pdf
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://lpc.events/event/2/contributions/69/
https://lpc.events/event/2/contributions/69/
https://doi.org/10.1109/TSC.2025.3564888
https://doi.org/10.1109/TSC.2025.3564888
https://doi.org/10.1109/TSC.2025.3564888
https://doi.org/10.1109/TSC.2025.3564888

	Kubernetes Scheduling with Checkpoint/Restore: Challenges and Open Problems

